Journal Home > Volume 15 , Issue 5

This study proposes a feasible and scalable production strategy to naturally obtain aligned platinum diselenide (PtSe2) nanoribbon arrays with anisotropic conductivity. The anisotropic properties of two-dimensional (2D) materials, especially transition-metal dichalcogenides (TMDs), have attracted great interest in research. The dependence of physical properties on their lattice orientations is of particular interest because of its potential in diverse applications, such as nanoelectronics and optoelectronics. One-dimensional (1D) nanostructures facilitate many feasible production strategies for shaping 2D materials into unidirectional 1D nanostructures, providing methods to investigate the anisotropic properties of 2D materials based on their lattice orientations and dimensionality. The natural alignment of zigzag (ZZ) PtSe2 nanoribbons is experimentally demonstrated using angle-resolved polarized Raman spectroscopy (ARPRS), and the selective growth mechanism is further theoretically revealed by comparing edges and edge energies of different orientations using the density functional theory (DFT). Back-gate field-effect transistors (FETs) are also constructed of unidirectional PtSe2 nanoribbons to investigate their anisotropic electrical properties, which align with the results of the projected density of states (DOS) calculations. This work provides new insight into the anisotropic properties of 2D materials and a feasible investigation strategy from experimental and theoretical perspectives.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Anisotropic electrical properties of aligned PtSe2 nanoribbon arrays grown by a pre-patterned selective selenization process

Show Author's information Huaipeng Wang1,§Zhifang Liu2,§Yilin Sun3( )Xiaofan Ping2Jianlong Xu4Yingtao Ding3Haowen Hu5Dan Xie1( )Tianling Ren1 ( )
School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

§ Huaipeng Wang and Zhifang Liu contributed equally to this work.

Abstract

This study proposes a feasible and scalable production strategy to naturally obtain aligned platinum diselenide (PtSe2) nanoribbon arrays with anisotropic conductivity. The anisotropic properties of two-dimensional (2D) materials, especially transition-metal dichalcogenides (TMDs), have attracted great interest in research. The dependence of physical properties on their lattice orientations is of particular interest because of its potential in diverse applications, such as nanoelectronics and optoelectronics. One-dimensional (1D) nanostructures facilitate many feasible production strategies for shaping 2D materials into unidirectional 1D nanostructures, providing methods to investigate the anisotropic properties of 2D materials based on their lattice orientations and dimensionality. The natural alignment of zigzag (ZZ) PtSe2 nanoribbons is experimentally demonstrated using angle-resolved polarized Raman spectroscopy (ARPRS), and the selective growth mechanism is further theoretically revealed by comparing edges and edge energies of different orientations using the density functional theory (DFT). Back-gate field-effect transistors (FETs) are also constructed of unidirectional PtSe2 nanoribbons to investigate their anisotropic electrical properties, which align with the results of the projected density of states (DOS) calculations. This work provides new insight into the anisotropic properties of 2D materials and a feasible investigation strategy from experimental and theoretical perspectives.

Keywords: density functional theory, anisotropic properties, PtSe2, nanoribbons, scalable production

References(56)

1

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

2

Li, X. F.; Yang, L. M.; Si, M. W.; Li, S. C.; Huang, M. Q.; Ye, P. D.; Wu, Y. Q. Performance potential and limit of MoS2 transistors. Adv. Mater. 2015, 27, 1547–1552.

3

Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 2015, 15, 709–713.

4

Das, P. K.; Di Sante, D.; Vobornik, I.; Fujii, J.; Okuda, T.; Bruyer, E.; Gyenis, A.; Feldman, B. E.; Tao, J.; Ciancio, R. et al. Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2. Nat. Commun. 2016, 7, 10847.

5

Hsu, C.; Frisenda, R.; Schmidt, R.; Arora, A.; De Vasconcellos, S. M.; Bratschitsch, R.; Van Der Zant, H. S. J.; Castellanos-Gomez, A. Thickness-dependent refractive index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe2. Adv. Opt. Mater. 2019, 7, 1900239.

6

Camellini, A.; Mennucci, C.; Cinquanta, E.; Martella, C.; Mazzanti, A.; Lamperti, A.; Molle, A.; De Mongeot, F. B.; Valle, G. D.; Zavelani-Rossi, M. Ultrafast anisotropic exciton dynamics in nanopatterned MoS2 sheets. ACS Photonics 2018, 5, 3363–3371.

7

Kolobov, A. V.; Fons, P.; Tominaga, J. Electronic excitation-induced semiconductor-to-metal transition in monolayer MoTe2. Phys. Rev. B Condens. Matter. 2016, 94, 094114.

8

Ma, H. F.; Qian, Q.; Qin, B.; Wan, Z.; Wu, R. X.; Zhao, B.; Zhang, H. M.; Zhang, Z. C.; Li, J.; Zhang, Z. W. et al. Controlled synthesis of ultrathin PtSe2 nanosheets with thickness-tunable electrical and magnetoelectrical properties. Adv. Sci. 2021, 2103507.

9

Hu, H. W.; Wang, H. P.; Sun, Y. L.; Li, J. W.; Wei, J. L.; Xie, D.; Zhu, H. W. Out-of-plane and in-plane ferroelectricity of atom-thick two-dimensional InSe. Nanotechnology 2021, 32, 385202.

10

Sun, M. X.; Fang, Q. Y.; Xie, D.; Sun, Y. L.; Qian, L.; Xu, J. L.; Xiao, P.; Teng, C. J.; Li, W. W.; Ren, T. L. et al. Heterostructured graphene quantum dot/WSe2/Si photodetector with suppressed dark current and improved detectivity. Nano Res. 2018, 11, 3233–3243.

11

Lee, D.; Hwang, E.; Lee, Y.; Choi, Y.; Kim, J. S.; Lee, S.; Cho, J. H. Multibit MoS2 photoelectronic memory with ultrahigh sensitivity. Adv. Mater. 2016, 28, 9196–9202.

12

Lin, Z. Y.; Liu, Y.; Halim, U.; Ding, M. N.; Liu, Y. Y.; Wang, Y. L.; Jia, C. C.; Chen, P.; Duan, X. D.; Wang, C. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254–258.

13

Ge, J.; Luo, T. C.; Lin, Z. Z.; Shi, J. P.; Liu, Y. Z.; Wang, P. Y.; Zhang, Y. F.; Duan, W. H.; Wang, J. Magnetic moments induced by atomic vacancies in transition metal dichalcogenide flakes. Adv. Mater. 2021, 33, 2005465.

14

Arab, A.; Li, Q. L. Anisotropic thermoelectric behavior in armchair and zigzag mono- and fewlayer MoS2 in thermoelectric generator applications. Sci. Rep. 2015, 5, 13706.

15

Ataca, C.; Şahin, H.; Aktürk, E.; Ciraci, S. Mechanical and electronic properties of MoS2 nanoribbons and their defects. J. Phys. Chem. C 2011, 115, 3934–3941.

16

Soleimani-Amiri, S.; Rudi, S. G. Effects of sulfur line vacancy defects on the electronic and optical properties of armchair MoS2 nanoribbon. Opt. Mater. 2020, 110, 110491.

17

Tong, L.; Duan, X. Y.; Song, L. Y.; Liu, T. D.; Ye, L.; Huang, X. Y.; Wang, P.; Sun, Y. H.; He, X.; Zhang, L. J. et al. Artificial control of in-plane anisotropic photoelectricity in monolayer MoS2. Appl. Mater. Today 2019, 15, 203–211.

18

Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

19

Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

20

Dolui, K.; Pemmaraju, C. D.; Sanvito, S. Electric field effects on armchair MoS2 nanoribbons. ACS Nano 2012, 6, 4823–4834.

21

Pan, J.; Wang, R.; Zhou, X. Y.; Zhong, J. S.; Xu, X. Y.; Hu, J. G. Transition-metal doping induces the transition of electronic and magnetic properties in armchair MoS2 nanoribbons. Phys. Chem. Chem. Phys. 2017, 19, 24594–24604.

22

Nayeri, M.; Fathipour, M. A numerical analysis of electronic and optical properties of the zigzag MoS2 nanoribbon under uniaxial strain. IEEE Trans. Electron Devices 2018, 65, 1988–1994.

23

Feng, X. W.; Huang, X.; Chen, L.; Tan, W. C.; Wang, L.; Ang, K. W. High mobility anisotropic black phosphorus nanoribbon field-effect transistor. Adv. Funct. Mater. 2018, 28, 1801524.

24

Zhao, Y. S.; Zhang, G.; Nai, M. H.; Ding, G. Q.; Li, D. F.; Liu, Y.; Hippalgaonkar, K.; Lim, C. T.; Chi, D. Z.; Li, B. W. et al. Probing the physical origin of anisotropic thermal transport in black phosphorus nanoribbons. Adv. Mater. 2018, 30, 1804928.

25

Yim, C.; Lee, K.; McEvoy, N.; O’Brien, M.; Riazimehr, S.; Berner, N. C.; Cullen, C. P.; Kotakoski, J.; Meyer, J. C.; Lemme, M. C. et al. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano 2016, 10, 9550–9558.

26

Liu, Z. F.; Sun, Y. L.; Cao, H. Q.; Xie, D.; Li, W.; Wang, J. O.; Cheetham, A. K. Unzipping of black phosphorus to form zigzag-phosphorene nanobelts. Nat. Commun. 2020, 11, 3917.

27

Watts, M. C.; Picco, L.; Russell-Pavier, F. S.; Cullen, P. L.; Miller, T. S.; Bartuś, S. P.; Payton, O. D.; Skipper, N. T.; Tileli, V.; Howard, C. A. Production of phosphorene nanoribbons. Nature 2019, 568, 216–220.

28

Xie, C.; Zeng, L. H.; Zhang, Z. X.; Tsang, Y. H.; Luo, L. B.; Lee, J. H. High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate. Nanoscale 2018, 10, 15285–15293.

29

Zhao, Y. D.; Qiao, J. S.; Yu, Z. H.; Yu, P.; Xu, K.; Lau, S. P.; Zhou, W.; Liu, Z.; Wang, X. R.; Ji, W. et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 2017, 29, 1604230.

30

Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018, 28, 1705970.

31

Jiang, W.; Wang, X. D.; Chen, Y.; Wu, G. J.; Ba, K.; Xuan, N. N.; Sun, Y. Y.; Gong, P.; Bao, J. X.; Shen, H. et al. Large-area high quality PtSe2 thin film with versatile polarity. InfoMat 2019, 1, 260–267.

32

Avsar, A.; Cheon, C. Y.; Pizzochero, M.; Tripathi, M.; Ciarrocchi, A.; Yazyev, O. V.; Kis, A. Probing magnetism in atomically thin semiconducting PtSe2. Nat. Commun. 2020, 11, 4806.

33

Yao, W.; Wang, E. Y.; Huang, H. Q.; Deng, K.; Yan, M. Z.; Zhang, K. N.; Miyamoto, K.; Okuda, T.; Li, L. F.; Wang, Y. L. et al. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film. Nat. Commun. 2017, 8, 14216.

34

Yan, M. Z.; Wang, E. Y.; Zhou, X.; Zhang, G. Q.; Zhang, H. Y.; Zhang, K. N.; Yao, W.; Lu, N. P.; Yang, S. Z.; Wu, S. L. et al. High quality atomically thin PtSe2 films grown by molecular beam epitaxy. 2D Mater. 2017, 4, 045015.

35

Gong, Y. N.; Lin, Z. T.; Chen, Y. X.; Khan, Q.; Wang, C.; Zhang, B.; Nie, G. H.; Xie, N.; Li, D. L. Two-dimensional platinum diselenide: Synthesis, emerging applications, and future challenges. Nano-Micro Lett. 2020, 12, 174.

36

Ping, X. F.; Liang, D.; Wu, Y. Y.; Yan, X. X.; Zhou, S. X.; Hu, D. K.; Pan, X. Q.; Lu, P. F.; Jiao, L. Y. Activating a two-dimensional PtSe2 basal plane for the hydrogen evolution reaction through the simultaneous generation of atomic vacancies and Pt clusters. Nano Lett. 2021, 21, 3857–3863.

37

Van Der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

38

O’Brien, M.; McEvoy, N.; Motta, C.; Zheng, J. Y.; Berner, N. C.; Kotakoski, J.; Elibol, K.; Pennycook, T. J.; Meyer, J. C.; Yim, C. et al. Raman characterization of platinum diselenide thin films. 2D Mater. 2016, 3, 021004.

39

Loudon, R. The Raman effect in crystals. Adv. Phys. 2001, 50, 813–864.

40

Zhao, Y. D.; Qiao, J. S.; Yu, P.; Hu, Z. X.; Lin, Z. Y.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399–2407.

41

Azizimanesh, A.; Peña, T.; Sewaket, A.; Hou, W. H.; Wu, S. M. Uniaxial and biaxial strain engineering in 2D MoS2 with lithographically patterned thin film stressors. Appl. Phys. Lett. 2021, 118, 213104.

42

Liu, L. N.; Wu, J. X.; Wu, L. Y.; Ye, M.; Liu, X. Z.; Wang, Q.; Hou, S. Y.; Lu, P. F.; Sun, L. F.; Zheng, J. Y. et al. Phase-selective synthesis of 1T ′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108–1114.

43

Chen, K. Y.; Deng, J. K.; Ding, X. D.; Sun, J.; Yang, S.; Liu, J. Z. Ferromagnetism of 1T ′-MoS2 nanoribbons stabilized by edge reconstruction and its periodic variation on nanoribbons width. J. Am. Chem. Soc. 2018, 140, 16206–16212.

44

Gan, C. K.; Srolovitz, D. J. First-principles study of graphene edge properties and flake shapes. Phys. Rev. B Condens. Matter. 2010, 81, 125445.

45

Ansari, L.; Monaghan, S.; McEvoy, N.; Coileáin, C. Ó.; Cullen, C. P.; Lin, J.; Siris, R.; Stimpel-Lindner, T.; Burke, K. F.; Mirabelli, G. et al. Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C. npj 2D Mater. Appl. 2019, 3, 33.

46

Wang, L.; Zhang, S. F.; McEvoy, N.; Sun, Y. Y.; Huang, J. W.; Xie, Y. F.; Dong, N. N.; Zhang, X. Y.; Kislyakov, I. M.; Nunzi, J. M. et al. Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2. Laser Photon. Rev. 2019, 13, 1900052.

47

Kandemir, A.; Akbali, B.; Kahraman, Z.; Badalov, S. V.; Ozcan, M.; Iyikanat, F.; Sahin, H. Structural, electronic and phononic properties of PtSe2: From monolayer to bulk. Semicond. Sci. Technol. 2018, 33, 085002.

48

Madsen, G. K. H.; Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006, 175, 67–71.

49

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter. 1996, 54, 11169–11186.

50

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

51

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid–metal–amorphous–semiconductor transition in germanium. Phys. Rev. B Condens. Matter. 1994, 49, 14251–14269.

52

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter. 1993, 47, 558–561.

53

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

54

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter. 1999, 59, 1758–1775.

55

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B Condens. Matter. 1994, 50, 17953–17979.

56

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B Condens. Matter. 1976, 13, 5188–5192.

File
12274_2022_4110_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 November 2021
Revised: 17 December 2021
Accepted: 23 December 2021
Published: 24 February 2022
Issue date: May 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 52072204 and 62104017), the National Postdoctoral Program for Innovative Talents of China (No. BX20200049), and China Postdoctoral Science Foundation (No. 2021M690013). We also acknowledge the Tsinghua Xuetang Talents Program for providing the computational resources.

Return