Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The volume of securely encrypted data transmission increases continuously in modern society with all things connected. Towards this end, true random numbers generated from physical sources are highly required for guaranteeing security of encryption and decryption schemes for exchanging sensitive information. However, majority of true random number generators (TRNGs) are mechanically rigid, and thus cannot be compatibly integrated with some specific flexible platforms. Herein, we present a flexible and stretchable bionic TRNG inspired by the uniqueness and randomness of biological architectures. The flexible TRNG film is molded from the surface microstructures of natural plants (e.g., ginkgo leaf) via a simple, low-cost, and environmentally friendly manufacturing process. In our proof-of-principle experiment, the TRNG exhibits a fast generation speed of up to 1.04 Gbit/s, in which random numbers are fully extracted from laser speckle patterns with a high extraction rate of 72%. Significantly, the resulting random bit streams successfully pass all randomness test suites including NIST, TestU01, and DIEHARDER. Even after 10,000 times cyclic stretching or bending tests, or during temperature shock (−25–80 °C), the bionic TRNG still reveals robust mechanical reliability and thermal stability. Such a flexible TRNG shows a promising potential in information security of emerging flexible networked electronics.
Marx, V. The big challenges of big data. Nature 2013, 498, 255–260.
Yang, Y. Multi-tier computing networks for intelligent IoT. Nat. Electron. 2019, 2, 4–5.
Sfar, A. R.; Natalizio, E.; Challal, Y.; Chtourou, Z. A roadmap for security challenges in the internet of things. Digital Commun. Netw. 2018, 4, 118–137.
Wan, Y. B.; Wang, P. D.; Huang, F.; Yuan, J.; Li, D.; Chen, K.; Kang, J. B.; Li, Q.; Zhang, T. P.; Sun, S. et al. Bionic optical physical unclonable functions for authentication and encryption. J. Mater. Chem. C 2021, 9, 13200–13208.
Jin, C.; Chen, W. X.; Cao, Y. K.; Xu, Z. W.; Tan, Z. M.; Zhang, X.; Deng, L.; Zheng, C. S.; Zhou, J.; Shi, H. S. et al. Development and evaluation of an artificial intelligence system for COVID-19 diagnosis. Nat. Commun. 2020, 11, 5088.
Karaklajić, D.; Schmidt, J. M.; Verbauwhede, I. Hardware designer’s guide to fault attacks. IEEE Trans. Very Large Scale Integr. Syst. 2013, 21, 2295–2306.
Mao, S. F.; Wolf, T. Hardware support for secure processing in embedded systems. IEEE Trans. Comput. 2010, 59, 847–854.
Pappu, R.; Recht, B.; Taylor, J.; Gershenfeld, N. Physical one-way functions. Science 2002, 297, 2026–2030.
Fischer, I.; Gauthier, D. J. High-speed harvesting of random numbers. Science 2021, 371, 889–890.
Wang, P. D.; Chen, F. L.; Li, D.; Sun, S.; Huang, F.; Zhang, T. P.; Li, Q.; Chen, K.; Wan, Y. B.; Leng, X. et al. Authentication of optical physical unclonable functions based on single-pixel detection. Phys. Rev. Appl. 2021, 16, 054025.
Shannon, C. E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715.
Chen, S. Random number generators go public. Science 2018, 360, 1383–1384.
Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195.
Barreno, M.; Nelson, B.; Joseph, A. D.; Tygar, J. D. The security of machine learning. Mach. Learn. 2010, 81, 121–148.
Varnava, C. FinFETs for cryptography. Nat. Electron. 2020, 3, 732–732.
Skrzypczyk, P. Predictably random. Nat. Phys. 2021, 17, 431–432.
Chen, K.; Huang, F.; Wang, P. D.; Wan, Y. B.; Li, D.; Yao, Y. Fast random number generator based on optical physical unclonable functions. Opt. Lett. 2021, 46, 4875–4878.
Jiang, H.; Belkin, D.; Savel’ev, S. E.; Lin, S. Y.; Wang, Z. R.; Li, Y. N.; Joshi, S.; Midya, R.; Li, C.; Rao, M. Y. et al. A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 2017, 8, 882.
Woo, K. S.; Wang, Y. M.; Kim, Y.; Kim, J.; Kim, W.; Hwang, C. S. A combination of a volatile-memristor-based true random-number generator and a nonlinear-feedback shift register for high-speed encryption. Adv. Electron. Mater. 2020, 6, 1901117.
Kim, G.; In, J. H.; Kim, Y. S.; Rhee, H.; Park, W.; Song, H. C.; Park, J.; Kim, K. M. Self-clocking fast and variation tolerant true random number generator based on a stochastic mott memristor. Nat. Commun. 2021, 12, 2906.
Wen, C.; Li, X. H.; Zanotti, T.; Puglisi, F. M.; Shi, Y. Y.; Saiz, F.; Antidormi, A.; Roche, S.; Zheng, W. W.; Liang, X. H. et al. Advanced data encryption using 2D materials. Adv. Mater. 2021, 33, 2100185.
Li, X. H.; Zanotti, T.; Wang, T.; Zhu, K. C.; Puglisi, F. M.; Lanza, M. Random telegraph noise in metal-oxide memristors for true Random number generators: A materials study. Adv. Funct. Mater. 2021, 31, 2102172.
Gaviria Rojas, W. A.; McMorrow, J. J.; Geier, M. L.; Tang, Q. Y.; Kim, C. H.; Marks, T. J.; Hersam, M. C. Solution-processed carbon nanotube true random number generator. Nano Lett. 2017, 17, 4976–4981.
Brown, J.; Zhang, J. F.; Zhou, B.; Mehedi, M.; Freitas, P.; Marsland, J.; Ji, Z. G. Random-telegraph-noise-enabled true random number generator for hardware security. Sci. Rep. 2020, 10, 17210.
Wali, A.; Ravichandran, H.; Das, S. A machine learning attack resilient true Random number generator based on stochastic programming of atomically thin transistors. ACS Nano 2021, 15, 17804–17812.
Yu, A. F.; Chen, X. Y.; Cui, H. T.; Chen, L. B.; Luo, J. J.; Tang, W.; Peng, M. Z.; Zhang, Y.; Zhai, J. Y.; Wang, Z. L. Self-powered random number generator based on coupled triboelectric and electrostatic induction effects at the liquid–dielectric interface. ACS Nano 2016, 10, 11434–11441.
Kim, M. S.; Tcho, I. W.; Park, S. J.; Choi, Y. K. Random number generator with a chaotic wind-driven triboelectric energy harvester. Nano Energy 2020, 78, 105275.
Kim, K.; Bittner, S.; Zeng, Y. Q.; Guazzotti, S.; Hess, O.; Wang, Q. J.; Cao, H. Massively parallel ultrafast random bit generation with a chip-scale laser. Science 2021, 371, 948–952.
Uchida, A.; Amano, K.; Inoue, M.; Hirano, K.; Naito, S.; Someya, H.; Oowada, I.; Kurashige, T.; Shiki, M.; Yoshimori, S. et al. Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2008, 2, 728–732.
Kanter, I.; Aviad, Y.; Reidler, I.; Cohen, E.; Rosenbluh, M. An optical ultrafast random bit generator. Nat. Photonics 2010, 4, 58–61.
Bai, B.; Huang, J. Y.; Qiao, G. R.; Nie, Y. Q.; Tang, W. J.; Chu, T.; Zhang, J.; Pan, J. W. 18.8. Gbps real-time quantum random number generator with a photonic integrated chip. Appl. Phys. Lett. 2021, 118, 264001.
Gabriel, C.; Wittmann, C.; Sych, D.; Dong, R. F.; Mauerer, W.; Andersen, U. L.; Marquardt, C.; Leuchs, G. A generator for unique quantum random numbers based on vacuum states. Nat. Photonics 2010, 4, 711–715.
Avesani, M.; Marangon, D. G.; Vallone, G.; Villoresi, P. Source-device-independent heterodyne-based quantum random number generator at 17 Gbps. Nat. Commun. 2018, 9, 5365.
Liu, Y.; Zhao, Q.; Li, M. H.; Guan, J. Y.; Zhang, Y. B.; Bai, B.; Zhang, W. J.; Liu, W. Z.; Wu, C.; Yuan, X. et al. Device-independent quantum random-number generation. Nature 2018, 562, 548–551.
Luo, Q.; Cheng, Z. D.; Fan, J. K.; Tan, L. J.; Song, H. Z.; Deng, G. W.; Wang, Y.; Zhou, Q. Quantum random number generator based on single-photon emitter in gallium nitride. Opt. Lett. 2020, 45, 4224–4227.
Sznitko, L.; Chtouki, T.; Sahraoui, B.; Mysliwiec, J. Bichromatic laser dye as a photonic Random number generator. ACS Photonics 2021, 8, 1630–1638.
Lee, E. C.; Parrilla-Gutierrez, J. M.; Henson, A.; Brechin, E. K.; Cronin, L. A crystallization robot for generating true random numbers based on stochastic chemical processes. Matter 2020, 2, 649–657.
Meiser, L. C.; Koch, J.; Antkowiak, P. L.; Stark, W. J.; Heckel, R.; Grass, R. N. DNA synthesis for true random number generation. Nat. Commun. 2020, 11, 5869.
Pironio, S.; Acín, A.; Massar, S.; de la Giroday, A. B.; Matsukevich, D. N.; Maunz, P.; Olmschenk, S.; Hayes, D.; Luo, L.; Manning, T. A.; Monroe, C. Random numbers certified by Bell’s theorem. Nature 2010, 464, 1021–1024.
Wan, Y. B.; Qiu, Z. G.; Huang, J.; Yang, J. Y.; Wang, Q.; Lu, P.; Yang, J. L.; Zhang, J. M.; Huang, S. Y.; Wu, Z. G. et al. Natural plant materials as dielectric layer for highly sensitive flexible electronic skin. Small 2018, 14, 1801657.
Qiu, Z. G.; Wan, Y. B.; Zhou, W. H.; Yang, J. Y.; Yang, J. L.; Huang, J.; Zhang, J. M.; Liu, Q. X.; Huang, S. Y.; Bai, N. N. et al. Ionic skin with biomimetic dielectric layer templated from Calathea zebrineleaf. Adv. Funct. Mater. 2018, 28, 1802343.
Wan, Y. B.; Qiu, Z. G.; Hong, Y.; Wang, Y.; Zhang, J. M.; Liu, Q. X.; Wu, Z. G.; Guo, C. F. A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures. Adv. Electron. Mater. 2018, 4, 1700586.
Wan, Y. B.; Wang, Y.; Guo, C. F. Recent progresses on flexible tactile sensors. Mater. Today Phys. 2017, 1, 61–73.
Qin, D.; Xia, Y. N.; Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 2010, 5, 491–502.
Ma, X. F.; Xu, F. H.; Xu, H.; Tan, X. Q.; Qi, B.; Lo, H. K. Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction. Phys. Rev. A 2013, 87, 062327.
Sadat, M. N.; Aziz, M. M. A.; Mohammed, N.; Pakhomov, S.; Liu, H. F.; Jiang, X. Q. A privacy-preserving distributed filtering framework for NLP artifacts. BMC Med. Inform. Decis. Mak. 2019, 19, 183.
Ji, L.; Gallo, K. An agreement coefficient for image comparison. Photogramm. Eng. Rem. Sens. 2006, 72, 823–833.
L’Ecuyer, P.; Simard, R. TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Software 2007, 33, 22.