AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A flexible and stretchable bionic true random number generator

Yongbiao Wan1,2,§Kun Chen1,2,§Feng Huang1,2Pidong Wang1,2Xiao Leng1,2Dong Li1,2Jianbin Kang1,2Zhiguang Qiu3( )Yao Yao1,2( )
Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China
Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China
School of Electronics and Information Technology, State Key Lab of Opto-Electronic Materials & Technologies, Guangdong Province Key Lab of Display Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China

§ Yongbiao Wan and Kun Chen contributed equally to this work.

Show Author Information

Graphical Abstract

A flexible and stretchable bionic true random number generator (TRNG) is inspired by biological uniqueness and randomness. Random numbers extracted from laser speckle patterns of the flexible TRNG show superior randomness, robustness, and potential in application of flexible networked electronics.

Abstract

The volume of securely encrypted data transmission increases continuously in modern society with all things connected. Towards this end, true random numbers generated from physical sources are highly required for guaranteeing security of encryption and decryption schemes for exchanging sensitive information. However, majority of true random number generators (TRNGs) are mechanically rigid, and thus cannot be compatibly integrated with some specific flexible platforms. Herein, we present a flexible and stretchable bionic TRNG inspired by the uniqueness and randomness of biological architectures. The flexible TRNG film is molded from the surface microstructures of natural plants (e.g., ginkgo leaf) via a simple, low-cost, and environmentally friendly manufacturing process. In our proof-of-principle experiment, the TRNG exhibits a fast generation speed of up to 1.04 Gbit/s, in which random numbers are fully extracted from laser speckle patterns with a high extraction rate of 72%. Significantly, the resulting random bit streams successfully pass all randomness test suites including NIST, TestU01, and DIEHARDER. Even after 10,000 times cyclic stretching or bending tests, or during temperature shock (−25–80 °C), the bionic TRNG still reveals robust mechanical reliability and thermal stability. Such a flexible TRNG shows a promising potential in information security of emerging flexible networked electronics.

Electronic Supplementary Material

Download File(s)
12274_2022_4109_MOESM1_ESM.pdf (2.7 MB)

References

1

Marx, V. The big challenges of big data. Nature 2013, 498, 255–260.

2

Yang, Y. Multi-tier computing networks for intelligent IoT. Nat. Electron. 2019, 2, 4–5.

3

Sfar, A. R.; Natalizio, E.; Challal, Y.; Chtourou, Z. A roadmap for security challenges in the internet of things. Digital Commun. Netw. 2018, 4, 118–137.

4

Wan, Y. B.; Wang, P. D.; Huang, F.; Yuan, J.; Li, D.; Chen, K.; Kang, J. B.; Li, Q.; Zhang, T. P.; Sun, S. et al. Bionic optical physical unclonable functions for authentication and encryption. J. Mater. Chem. C 2021, 9, 13200–13208.

5

Jin, C.; Chen, W. X.; Cao, Y. K.; Xu, Z. W.; Tan, Z. M.; Zhang, X.; Deng, L.; Zheng, C. S.; Zhou, J.; Shi, H. S. et al. Development and evaluation of an artificial intelligence system for COVID-19 diagnosis. Nat. Commun. 2020, 11, 5088.

6

Karaklajić, D.; Schmidt, J. M.; Verbauwhede, I. Hardware designer’s guide to fault attacks. IEEE Trans. Very Large Scale Integr. Syst. 2013, 21, 2295–2306.

7

Mao, S. F.; Wolf, T. Hardware support for secure processing in embedded systems. IEEE Trans. Comput. 2010, 59, 847–854.

8

Pappu, R.; Recht, B.; Taylor, J.; Gershenfeld, N. Physical one-way functions. Science 2002, 297, 2026–2030.

9

Fischer, I.; Gauthier, D. J. High-speed harvesting of random numbers. Science 2021, 371, 889–890.

10

Wang, P. D.; Chen, F. L.; Li, D.; Sun, S.; Huang, F.; Zhang, T. P.; Li, Q.; Chen, K.; Wan, Y. B.; Leng, X. et al. Authentication of optical physical unclonable functions based on single-pixel detection. Phys. Rev. Appl. 2021, 16, 054025.

11

Shannon, C. E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715.

12

Chen, S. Random number generators go public. Science 2018, 360, 1383–1384.

13

Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195.

14

Barreno, M.; Nelson, B.; Joseph, A. D.; Tygar, J. D. The security of machine learning. Mach. Learn. 2010, 81, 121–148.

15

Varnava, C. FinFETs for cryptography. Nat. Electron. 2020, 3, 732–732.

16

Skrzypczyk, P. Predictably random. Nat. Phys. 2021, 17, 431–432.

17

Chen, K.; Huang, F.; Wang, P. D.; Wan, Y. B.; Li, D.; Yao, Y. Fast random number generator based on optical physical unclonable functions. Opt. Lett. 2021, 46, 4875–4878.

18

Jiang, H.; Belkin, D.; Savel’ev, S. E.; Lin, S. Y.; Wang, Z. R.; Li, Y. N.; Joshi, S.; Midya, R.; Li, C.; Rao, M. Y. et al. A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 2017, 8, 882.

19

Woo, K. S.; Wang, Y. M.; Kim, Y.; Kim, J.; Kim, W.; Hwang, C. S. A combination of a volatile-memristor-based true random-number generator and a nonlinear-feedback shift register for high-speed encryption. Adv. Electron. Mater. 2020, 6, 1901117.

20

Kim, G.; In, J. H.; Kim, Y. S.; Rhee, H.; Park, W.; Song, H. C.; Park, J.; Kim, K. M. Self-clocking fast and variation tolerant true random number generator based on a stochastic mott memristor. Nat. Commun. 2021, 12, 2906.

21

Wen, C.; Li, X. H.; Zanotti, T.; Puglisi, F. M.; Shi, Y. Y.; Saiz, F.; Antidormi, A.; Roche, S.; Zheng, W. W.; Liang, X. H. et al. Advanced data encryption using 2D materials. Adv. Mater. 2021, 33, 2100185.

22

Li, X. H.; Zanotti, T.; Wang, T.; Zhu, K. C.; Puglisi, F. M.; Lanza, M. Random telegraph noise in metal-oxide memristors for true Random number generators: A materials study. Adv. Funct. Mater. 2021, 31, 2102172.

23

Gaviria Rojas, W. A.; McMorrow, J. J.; Geier, M. L.; Tang, Q. Y.; Kim, C. H.; Marks, T. J.; Hersam, M. C. Solution-processed carbon nanotube true random number generator. Nano Lett. 2017, 17, 4976–4981.

24

Brown, J.; Zhang, J. F.; Zhou, B.; Mehedi, M.; Freitas, P.; Marsland, J.; Ji, Z. G. Random-telegraph-noise-enabled true random number generator for hardware security. Sci. Rep. 2020, 10, 17210.

25

Wali, A.; Ravichandran, H.; Das, S. A machine learning attack resilient true Random number generator based on stochastic programming of atomically thin transistors. ACS Nano 2021, 15, 17804–17812.

26

Yu, A. F.; Chen, X. Y.; Cui, H. T.; Chen, L. B.; Luo, J. J.; Tang, W.; Peng, M. Z.; Zhang, Y.; Zhai, J. Y.; Wang, Z. L. Self-powered random number generator based on coupled triboelectric and electrostatic induction effects at the liquid–dielectric interface. ACS Nano 2016, 10, 11434–11441.

27

Kim, M. S.; Tcho, I. W.; Park, S. J.; Choi, Y. K. Random number generator with a chaotic wind-driven triboelectric energy harvester. Nano Energy 2020, 78, 105275.

28

Kim, K.; Bittner, S.; Zeng, Y. Q.; Guazzotti, S.; Hess, O.; Wang, Q. J.; Cao, H. Massively parallel ultrafast random bit generation with a chip-scale laser. Science 2021, 371, 948–952.

29

Uchida, A.; Amano, K.; Inoue, M.; Hirano, K.; Naito, S.; Someya, H.; Oowada, I.; Kurashige, T.; Shiki, M.; Yoshimori, S. et al. Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2008, 2, 728–732.

30

Kanter, I.; Aviad, Y.; Reidler, I.; Cohen, E.; Rosenbluh, M. An optical ultrafast random bit generator. Nat. Photonics 2010, 4, 58–61.

31

Bai, B.; Huang, J. Y.; Qiao, G. R.; Nie, Y. Q.; Tang, W. J.; Chu, T.; Zhang, J.; Pan, J. W. 18.8. Gbps real-time quantum random number generator with a photonic integrated chip. Appl. Phys. Lett. 2021, 118, 264001.

32

Gabriel, C.; Wittmann, C.; Sych, D.; Dong, R. F.; Mauerer, W.; Andersen, U. L.; Marquardt, C.; Leuchs, G. A generator for unique quantum random numbers based on vacuum states. Nat. Photonics 2010, 4, 711–715.

33

Avesani, M.; Marangon, D. G.; Vallone, G.; Villoresi, P. Source-device-independent heterodyne-based quantum random number generator at 17 Gbps. Nat. Commun. 2018, 9, 5365.

34

Liu, Y.; Zhao, Q.; Li, M. H.; Guan, J. Y.; Zhang, Y. B.; Bai, B.; Zhang, W. J.; Liu, W. Z.; Wu, C.; Yuan, X. et al. Device-independent quantum random-number generation. Nature 2018, 562, 548–551.

35

Luo, Q.; Cheng, Z. D.; Fan, J. K.; Tan, L. J.; Song, H. Z.; Deng, G. W.; Wang, Y.; Zhou, Q. Quantum random number generator based on single-photon emitter in gallium nitride. Opt. Lett. 2020, 45, 4224–4227.

36

Sznitko, L.; Chtouki, T.; Sahraoui, B.; Mysliwiec, J. Bichromatic laser dye as a photonic Random number generator. ACS Photonics 2021, 8, 1630–1638.

37

Lee, E. C.; Parrilla-Gutierrez, J. M.; Henson, A.; Brechin, E. K.; Cronin, L. A crystallization robot for generating true random numbers based on stochastic chemical processes. Matter 2020, 2, 649–657.

38

Meiser, L. C.; Koch, J.; Antkowiak, P. L.; Stark, W. J.; Heckel, R.; Grass, R. N. DNA synthesis for true random number generation. Nat. Commun. 2020, 11, 5869.

39

Pironio, S.; Acín, A.; Massar, S.; de la Giroday, A. B.; Matsukevich, D. N.; Maunz, P.; Olmschenk, S.; Hayes, D.; Luo, L.; Manning, T. A.; Monroe, C. Random numbers certified by Bell’s theorem. Nature 2010, 464, 1021–1024.

40

Wan, Y. B.; Qiu, Z. G.; Huang, J.; Yang, J. Y.; Wang, Q.; Lu, P.; Yang, J. L.; Zhang, J. M.; Huang, S. Y.; Wu, Z. G. et al. Natural plant materials as dielectric layer for highly sensitive flexible electronic skin. Small 2018, 14, 1801657.

41

Qiu, Z. G.; Wan, Y. B.; Zhou, W. H.; Yang, J. Y.; Yang, J. L.; Huang, J.; Zhang, J. M.; Liu, Q. X.; Huang, S. Y.; Bai, N. N. et al. Ionic skin with biomimetic dielectric layer templated from Calathea zebrineleaf. Adv. Funct. Mater. 2018, 28, 1802343.

42

Wan, Y. B.; Qiu, Z. G.; Hong, Y.; Wang, Y.; Zhang, J. M.; Liu, Q. X.; Wu, Z. G.; Guo, C. F. A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures. Adv. Electron. Mater. 2018, 4, 1700586.

43

Wan, Y. B.; Wang, Y.; Guo, C. F. Recent progresses on flexible tactile sensors. Mater. Today Phys. 2017, 1, 61–73.

44

Qin, D.; Xia, Y. N.; Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 2010, 5, 491–502.

45
Pappu, R. S. Physical one-way functions. Ph. D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 2001.
46
Zhang, J. Visualization for Information Retrieval; Springer Science & Business Media: New York, 2007.
47
Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, USA, 1961, pp 547–561.
48

Ma, X. F.; Xu, F. H.; Xu, H.; Tan, X. Q.; Qi, B.; Lo, H. K. Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction. Phys. Rev. A 2013, 87, 062327.

49

Sadat, M. N.; Aziz, M. M. A.; Mohammed, N.; Pakhomov, S.; Liu, H. F.; Jiang, X. Q. A privacy-preserving distributed filtering framework for NLP artifacts. BMC Med. Inform. Decis. Mak. 2019, 19, 183.

50

Ji, L.; Gallo, K. An agreement coefficient for image comparison. Photogramm. Eng. Rem. Sens. 2006, 72, 823–833.

51
Rukhin, A.; Soto, J.; Nechvatal, J. R.; Smid, M. E.; Barker, E. B.; Leigh, S. D.; Levenson, M.; Vangel, M., Banks, D. L.; Heckert, N. A. et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST Special Publication 800–22, Revision 1a, 2010.
52

L’Ecuyer, P.; Simard, R. TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Software 2007, 33, 22.

53
Brown, R. G. Dieharder: A Random Number Test Suite, Version 3.31.1 [Online]. Robert G. Brown, NC, 2022; pp. https://webhome.phy.duke.edu/~rgb/General/dieharder.php (accessed)
Nano Research
Pages 4448-4456
Cite this article:
Wan Y, Chen K, Huang F, et al. A flexible and stretchable bionic true random number generator. Nano Research, 2022, 15(5): 4448-4456. https://doi.org/10.1007/s12274-022-4109-9
Topics:

909

Views

10

Crossref

9

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 15 November 2021
Revised: 20 December 2021
Accepted: 24 December 2021
Published: 08 March 2022
© Tsinghua University Press 2022
Return