Journal Home > Volume 15 , Issue 6

Linear α-olefins are important chemical raw materials. To purify α-olefins from a high-temperature Fischer–Tropsch synthetic oil, it is necessary to separate the α-olefins from the paraffins, which is challenging. Adsorption separation by zeolites is a promising alternative to energy-intensive distillation for α-olefin/paraffin separation. An integrated differential phase-contrast scanning transmission electron microscopy (iDPC-STEM) technique is used in combination with density functional theory (DFT) simulations and batch adsorption experiments to study the adsorption behavior of C6 α-olefins and the mechanism of selective adsorption of C6 α-olefin/paraffin. Direct electron microscopy real-space imaging of the atomic frameworks of the faujasite (FAU) and Linde Type A (LTA) zeolites and the C6 α-olefin-adsorption positions on their lattices is achieved through iDPC-STEM. The images provide direct evidence that C6 α-olefins preferentially adsorb at the edges of the FAU and LTA zeolite cavities. DFT calculations further reveal the relationship between host–guest interactions and different molecular orientations. Calculated and experimental results also show that the presence of calcium cations can enhance the selectivity of zeolites for α-olefin/paraffin adsorption. This work provides a means to investigate the behavior of guest molecules and the host–guest interactions in the adsorption or catalytic process of nanoporous materials.


menu
Abstract
Full text
Outline
About this article

Direct imaging and mechanism study of C6 α-olefin adsorption on faujasite and Linde Type A zeolites

Show Author's information Ruihan Yang1Xiao Chen2Junxiang Ma3Yuan Gao3Yujun Wang1( )Guangsheng Luo1
State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Lu’an Chemical Group CO., LTD., Changzhi046299, China

Abstract

Linear α-olefins are important chemical raw materials. To purify α-olefins from a high-temperature Fischer–Tropsch synthetic oil, it is necessary to separate the α-olefins from the paraffins, which is challenging. Adsorption separation by zeolites is a promising alternative to energy-intensive distillation for α-olefin/paraffin separation. An integrated differential phase-contrast scanning transmission electron microscopy (iDPC-STEM) technique is used in combination with density functional theory (DFT) simulations and batch adsorption experiments to study the adsorption behavior of C6 α-olefins and the mechanism of selective adsorption of C6 α-olefin/paraffin. Direct electron microscopy real-space imaging of the atomic frameworks of the faujasite (FAU) and Linde Type A (LTA) zeolites and the C6 α-olefin-adsorption positions on their lattices is achieved through iDPC-STEM. The images provide direct evidence that C6 α-olefins preferentially adsorb at the edges of the FAU and LTA zeolite cavities. DFT calculations further reveal the relationship between host–guest interactions and different molecular orientations. Calculated and experimental results also show that the presence of calcium cations can enhance the selectivity of zeolites for α-olefin/paraffin adsorption. This work provides a means to investigate the behavior of guest molecules and the host–guest interactions in the adsorption or catalytic process of nanoporous materials.

Keywords: electron microscopy, zeolites, host–guest interactions, adsorption separation, α-olefins

References(59)

1

Golub, F. S.; Bolotov, V. A.; Parmon, V. N. Modern trends in the processing of linear alpha olefins to technologically important products. Part 1. Kataliz v Promyshlennosti 2020, 20, 433–455.

2

Li, H.; Zhang, Z. S.; Sun, G. L.; Liu, S. L.; An, L. C.; Li, X. G.; Li, H.; Gao, X. Performance and mechanism of the separation of C8 α-olefin from F-T synthesis products using novel Ag-DES. AIChE J. 2021, 67, e17252.

3
IHS Markit. Linear Alpha-Olefins: Chemical Economics Handbook [Online].https://ihsmarkit.com/products/linear-alpha-olefins-chemical-economics-handbook.html (accessed Feb 1, 2020).
4
Global Alpha Olefins Market Research Report-Information by Type (1-Butene, 1-Hexene, 1-Octene, 1-Decene, and Others), by Application (Polyolefin Comonomer, Plasticizer, Lubricant, Surfactant, Drilling Machinery Fuel, and Others) and Region- Forecast Till 2030 [Online]. https://www.marketresearchfuture.com/reports/alpha-olefins-market-4877# (accessed Feb 12, 2021).
5

Ma, Y. F.; Xu, J.; Jiang, H. Z.; Li, J. S. Low viscosity PAO preparation by oligomerization of alpha-olefin from coal with metallocene catalyst. Pet. Process. Petrochem. 2016, 47, 32–36.

6

Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.

7
Piszczek, R.; Heins, B.; Hamilton, P.; Osby, T.; Zhang, D.; Wang, Z.; Hergenrother, M.; Nichols, J.; Haines, B.; Nicholson, J. Separating linear alpha olefin involves providing a pre-processed product stream comprising linear alpha olefins to first of series of distillation columns, and element of the series of distillation columns comprising a dividing wall column. WO2020114744-A1, June 11, 2020.
8

Wang, Y.; Hao, W. Y.; Jacquemin, J.; Goodrich, P.; Atilhan, M.; Khraisheh, M.; Rooney, D.; Thompson, J. Enhancing liquid-phase olefin-paraffin separations using novel silver-based ionic liquids. J. Chem. Eng. Data 2015, 60, 28–36.

9

Hong, G. H.; Ji, D.; Kang, S. W. Highly permeable ionic liquid/Cu composite membrane for olefin/paraffin separation. Chem. Eng. J. 2013, 230, 111–114.

10

Ashtiani, S.; Sofer, Z.; Průša, F.; Friess, K. Molecular-level fabrication of highly selective composite ZIF-8-CNT-PDMS membranes for effective CO2/N2, CO2/H2 and olefin/paraffin separations. Sep. Purif. Technol. 2021, 274, 119003.

11

Narin, G.; Martins, V. F. D.; Campo, M.; Ribeiro, A. M.; Ferreira, A.; Santos, J. C.; Schumann, K.; Rodrigues, A. E. Light olefins/paraffins separation with 13X zeolite binderless beads. Sep. Purif. Technol. 2014, 133, 452–475.

12

Bao, Z. B.; Chang, G. G.; Xing, H. B.; Krishna, R.; Ren, Q. L.; Chen, B. L. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures. Energy Environ. Sci. 2016, 9, 3612–3641.

13

Mei, L.; Wu, Y. F.; Zhou, X.; Yan, J.; Xu, F.; Li, Z. Adsorption performance of MIL-100(Fe) for separation of olefin-paraffin mixtures. J. Taiwan Inst. Chem. Eng. 2017, 70, 74–78.

14

Luna-Triguero, A.; Sławek, A.; Sánchez-de-Armas, R.; Gutiérrez-Sevillano, J. J.; Ania, C. O.; Parra, J. B.; Vicent-Luna, J. M.; Calero, S. π-Complexation for olefin/paraffin separation using aluminosilicates. Chem. Eng. J. 2020, 380, 122482.

15

Bryan, P. F. Removal of propylene from fuel-grade propane. Sep. Purif. Rev. 2004, 33, 157–182.

16

Nam, G. M.; Jeong, B. M.; Kang, S. H.; Lee, B. K.; Choi, D. K. Equilibrium isotherms of CH4, C2H6, C2H4, N2, and N2 on zeolite 5A using a static volumetric method. J. Chem. Eng. Data 2005, 50, 72–76.

17

Mofarahi, M.; Salehi, S. M. Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A. Adsorption 2013, 19, 101–110.

18

Loughlin, K. F.; Hasanain, M. A.; Abdul-Rehman, H. B. Quaternary, ternary, binary, and pure component sorption on zeolites. 2. Light alkanes on Linde 5A and 13X zeolites at moderate to high pressures. Ind. Eng. Chem. Res. 1990, 29, 1535–1546.

19

He, Y. B.; Krishna, R.; Chen, B. L. Metal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ. Sci. 2012, 5, 9107–9120.

20

Divekar, S.; Nanoti, A.; Dasgupta, S.; Aarti; Chauhan, R.; Gupta, P.; Garg, M. O.; Singh, S. P.; Mishra, I. M. Adsorption equilibria of propylene and propane on zeolites and prediction of their binary adsorption with the ideal adsorbed solution theory. J. Chem. Eng. Data 2016, 61, 2629–2637.

21

Anson, A.; Wang, Y.; Lin, C. C. H.; Kuznicki, T. M.; Kuznicki, S. M. Adsorption of ethane and ethylene on modified ETS-10. Chem. Eng. Sci. 2008, 63, 4171–4175.

22

Grande, C. A.; Lind, A.; Vistad, Ø.; Akporiaye, D. Olefin-paraffin separation using calcium-ETS-4. Ind. Eng. Chem. Res. 2014, 53, 15522–15530.

23

Bereciartua, P. J.; Cantín, Á.; Corma, A.; Jordá, J. L.; Palomino, M.; Rey, F.; Valencia, S.; Corcoran, E. W. Jr.; Kortunov, P.; Ravikovitch, P. I. et al. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science 2017, 358, 1068–1071.

24

Sala, A.; Pérez-Botella, E.; Jordá, J. L.; Cantín, A.; Rey, F.; Valencia, S. ITQ-69: A germanium-containing zeolite and its synthesis, structure determination, and adsorption properties. Angew. Chem., Int. Ed. 2021, 60, 11745–11750.

25

Min, J. G.; Kemp, K. C.; Hong, S. B. Silver ZK-5 zeolites for selective ethylene/ethane separation. Sep. Purif. Technol. 2020, 250, 117146.

26

Li, B. Y.; Zhang, Y. M.; Krishna, R.; Yao, K. X.; Han, Y.; Wu, Z. L.; Ma, D. X.; Shi, Z.; Pham, T.; Space, B. et al. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J. Am. Chem. Soc. 2014, 136, 8654–8660.

27

Jaramillo, D. E.; Reed, D. A.; Jiang, H. Z. H.; Oktawiec, J.; Mara, M. W.; Forse, A. C.; Lussier, D. J.; Murphy, R. A.; Cunningham, M.; Colombo, V. et al. Selective nitrogen adsorption via backbonding in a metal-organic framework with exposed vanadium sites. Nat. Mater. 2020, 19, 517–521.

28

Lazić, I.; Bosch, E. G. T.; Lazar, S. Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy 2016, 160, 265–280.

29

Lazic, I.; Bosch, E. G. T.; Lazar, S. Integrated differential phase contrast (iDPC) STEM. Acta Cryst. 2017, A73, C117–C118.

30

Liu, L. M.; Wang, N.; Zhu, C. Z.; Liu, X. N.; Zhu, Y. H.; Guo, P.; Alfilfil, L.; Dong, X. L.; Zhang, D. L.; Han, Y. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew. Chem., Int. Ed. 2020, 59, 819–825.

31

Song, D. S.; Zhang, X. F.; Lian, C. S.; Liu, H.; Alexandrou, I.; Lazić, I.; Bosch, E. G. T.; Zhang, D.; Wang, L. L.; Yu, R. et al. Visualization of dopant oxygen atoms in a Bi2Sr2CaCu2O8+δ superconductor. Adv. Funct. Mater. 2019, 29, 1903843.

32

Shen, B. Y.; Chen, X.; Wang, H. Q.; Xiong, H.; Bosch, E. G. T.; Lazić, I.; Cai, D. L.; Qian, W. Z.; Jin, S. F.; Liu, X. et al. A single-molecule van der Waals compass. Nature 2021, 592, 541–544.

33

Shen, B. Y.; Chen, X.; Cai, D. L.; Xiong, H.; Liu, X.; Meng, C. G.; Han, Y.; Wei, F. Atomic spatial and temporal imaging of local structures and light elements inside zeolite frameworks. Adv. Mater. 2020, 32, 1906103.

34

Shen, B. Y.; Chen, X.; Shen, K.; Xiong, H.; Wei, F. Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks. Nat. Commun. 2020, 11, 2692.

35

Shen, B. Y.; Chen, X.; Fan, X. Y.; Xiong, H.; Wang, H. Q.; Qian, W. Z.; Wang, Y.; Wei, F. Resolving atomic SAPO-34/18 intergrowth architectures for methanol conversion by identifying light atoms and bonds. Nat. Commun. 2021, 12, 2212.

36

Cho, K. H.; Yoon, J. W.; Lee, J. H.; Kim, J. C.; Kim, K.; Lee, U. H.; Choi, M.; Kwak, S. K.; Chang, J. S. Pore control of Al-based MIL-53 isomorphs for the preferential capture of ethane in an ethane/ethylene mixture. J. Mater. Chem. A 2021, 9, 14593–14600.

37

Bendt, S.; Hovestadt, M.; Böhme, U.; Paula, C.; Döpken, M.; Hartmann, M.; Keil, F. J. Olefin/paraffin separation potential of ZIF-9 and ZIF-71: A combined experimental and theoretical study. Eur. J. Inorg. Chem. 2016, 2016, 4440–4449.

38

Luna-Triguero, A.; Vicent-Luna, J. M.; Gómez-Álvarez, P.; Calero, S. Olefin/paraffin separation in open metal site Cu-BTC metal-organic framework. J. Phys. Chem. C 2017, 121, 3126–3132.

39

Kulkarni, A. R.; Sholl, D. S. Screening of copper open metal site MOFs for olefin/paraffin separations using DFT-derived force fields. J. Phys. Chem. C 2016, 120, 23044–23054.

40

Yu, Y.; Yang, L. F.; Tan, B.; Hu, J. B.; Wang, Q. J.; Cui, X. L.; Xing, H. B. Remarkable separation of C5 olefins in anion-pillared hybrid porous materials. Nano Res. 2021, 14, 541–545.

41

Herden, H.; Einicke, W. D.; Schöllner, R. Adsorption of n-hexane/n-olefin mixtures by NaX zeolites from liquid solution. J. Colloid Interface Sci. 1981, 79, 280–283.

42

Herden, H.; Einicke, W. D.; Jusek, M.; Messow, U.; Schöllner, R. Adsorption studies of n-Olefin/n-paraffin mixtures on X- and Y-zeolites. I. Comparison of liquid phase and vapor phase adsorption of hexane-1 and n-hexane on NaX-zeolite. J. Colloid Interface Sci. 1984, 97, 559–564.

43

Herden, H.; Einicke, W. D.; Messow, U.; Quitzsch, K.; Schöllner, R. Adsorption studies of n-olefin/n-paraffin mixtures on X- and Y-zeolites. II. Adsorption of tetradecene-1 /n-dodecane mixtures on modified X- and Y-zeolites. J. Colloid Interface Sci. 1984, 97, 565–573.

44

Jain, A. K.; Jasra, R. V.; Bhat, S. G. T. Liquid-phase adsorption of olefin/paraffin mixtures on ion-exchanged X zeolite. Sep. Sci. Technol. 1990, 25, 489–505.

45

Daems, I.; Leflaive, P.; Méthivier, A.; Denayer, J. F. M.; Baron, G. V. A study of packing induced selectivity effects in the liquid phase adsorption of alkane/alkene mixtures on NaY. Microporous Mesoporous Mat. 2005, 82, 191–199.

46

Yang, R. H.; Gao, R. M.; Qian, Z.; Wang, Y. J. Batch and fixed bed column selective adsorption of C6, C8, and C10 linear α-olefins from binary liquid olefin/paraffin mixtures onto 5A and 13X microporous molecular sieves. Sep. Purif. Technol. 2020, 230, 115884.

47

Yang, R. H.; Gao, R. M.; Wang, Y. J.; Qian, Z.; Luo, G. S. Selective adsorption of C6, C8, and C10 linear α-olefins from binary liquid-phase olefin/paraffin mixtures using zeolite adsorbents: Experiment and simulations. Langmuir 2020, 36, 8597–8609.

48

Bader, R. F. W.; Beddall, P. M. Virial field relationship for molecular charge distributions and the spatial partitioning of molecular properties. J. Chem. Phys. 1972, 56, 3320–3329.

49
Bader, R. F. W. Atoms in Molecules - A Quantum Theory. Clarendon Press: Oxford, 1994; pp 248–275.
50

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

51

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

52

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

53

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

54
Shang, Y. S. Synthesis and Adsorption Performance Study of Zeolites. Chemical Industry Press: Beijing, 2020; pp 21−36.
55

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

56

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

57

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

58

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

59

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

Publication history
Copyright
Acknowledgements

Publication history

Received: 05 November 2021
Revised: 14 December 2021
Accepted: 23 December 2021
Published: 15 March 2022
Issue date: June 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21991102 and 21878169), Key Technologies Research and Development Program of China (No. 2019YFA0905100), and Tsinghua University Initiative Scientific Research Program (No. 2018Z05JZY010).

Return