Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Abnormal expression of hydrogen peroxide (H2O2) indicates the disorder of cell functions and is able to induce the occurrence and deterioration of numerous diseases. However, limited by its low concentration under pathophysiological conditions, intracellular H2O2 is still difficult to be determined to date. Herein, to achieve sensitive quantification of H2O2 in cells, CIS/ZnS/ZnS quantum dots (CIS/d-ZnS QDs) are retrofitted with ZnO shells via self-passivation. Different from the traditional self-passivation of QDs, self-passivation of CIS/d-ZnS QDs is realized facilely without the assistance of additional cation ions, which improves optical properties of QDs and equips the QDs with a sensing layer. As a result, the CIS/d-ZnS/ZnO QDs exhibit enhanced fluorescence emission and stability. Relying on the decomposition of ZnO and ZnS shells in the presence of H2O2, aggregated QDs reveal exciton energy transfer effect, resulting in fluorescence quenching. On a basis of this principle, a fluorescence H2O2 sensor is further established with the CIS/d-ZnS/ZnO QDs. To be noted, since the equipped ZnO shells are more susceptible to H2O2 than original ZnS shells, analytical performance of the fluorescence sensor is remarkably promoted by the self-passivation of QDs. Accordingly, H2O2 can be measured in 5 orders of magnitude with a limit of detection (LOD) of 0.46 nM. Furthermore, because the ZnO shells improve H2O2-responsive selectivity and sensitivity, variation of H2O2 in cells can also be quantified with the CIS/d-ZnS/ZnO QDs. In this work, sensitive detection of intracellular H2O2 is enabled by equipping QDs with a sensing layer, which provides an alternative perspective of functionalizing nanomaterials for analytical applications.
Chen, Q.; Liang, C.; Sun, X. Q.; Chen, J. W.; Yang, Z. J.; Zhao, H.; Feng, L. Z.; Liu, Z. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proc. Natl. Acad. Sci. USA 2017, 114, 5343–5348.
Zhu, H.; Tamura, T.; Fujisawa, A.; Nishikawa, Y.; Cheng, R.; Takato, M.; Hamachi, I. Imaging and profiling of proteins under oxidative conditions in cells and tissues by hydrogen-peroxide-responsive labeling. J. Am. Chem. Soc. 2020, 142, 15711–15721.
Wen, T.; Zhang, H.; Chong, Y.; Wamer, W. G.; Yin, J. J.; Wu, X. C. Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen-mediated activation. Nano Res. 2016, 9, 1663–1673.
Lin, L. S.; Huang, T.; Song, J. B.; Ou, X. Y.; Wang, Z. T.; Deng, H. Z.; Tian, R.; Liu, Y. J.; Wang, J. F.; Liu, Y. et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 9937–9945.
He, Y. L.; Guo, S. W.; Zhang, Y.; Liu, Y.; Ju, H. X. NIR-II reinforced intracellular cyclic reaction to enhance chemodynamic therapy with abundant H2O2 supply. Biomaterials 2021, 275, 120962.
Li, X. X.; Duan, X. Y.; Yang, P.; Li, L.; Tang, B. Accurate in situ monitoring of mitochondrial H2O2 by robust SERS nanoprobes with a Au–Se interface. Anal. Chem. 2021, 93, 4059–4065.
Dong, H.; Zhou, Y. L.; Hao, Y. Q.; Zhao, L.; Sun, S.; Zhang, Y. T.; Ye, B. X.; Xu, M. T. “ Turn-on” ratiometric electrochemical detection of H2O2 in one drop of whole blood sample via a novel microelectrode sensor. Biosens. Bioelectron. 2020, 165, 112402.
Gu, X.; Wang, H.; Schultz, Z. D.; Camden, J. P. Sensing glucose in urine and serum and hydrogen peroxide in living cells by use of a novel boronate nanoprobe based on surface-enhanced Raman spectroscopy. Anal. Chem. 2016, 88, 7191–7197.
Li, J.; Jiang, M. Y.; Su, M. J.; Tian, L.; Shi, W. S.; Yu, C. M. Stretchable and transparent electrochemical sensor based on nanostructured Au on carbon nanotube networks for real-time analysis of H2O2 release from cells. Anal. Chem. 2021, 93, 6723–6730.
Pak, V. V.; Ezeriņa, D.; Lyublinskaya, O. G.; Pedre, B.; Tyurin-Kuzmin, P. A.; Mishina, N. M.; Thauvin, M.; Young, D.; Wahni, K.; Gache, S. A. M. et al. Ultrasensitive genetically encoded indicator for hydrogen peroxide identifies roles for the oxidant in cell migration and mitochondrial function. Cell Metab. 2020, 31, 642–652.e6.
Ye, S.; Hu, J. J.; Zhao, Q. A.; Yang, D. Fluorescent probes for in vitro and in vivo quantification of hydrogen peroxide. Chem. Sci. 2020, 11, 11989–11997.
Wu, Z.; Liu, M. M.; Liu, Z. C.; Tian, Y. Real-time imaging and simultaneous quantification of mitochondrial H2O2 and ATP in neurons with a single two-photon fluorescence-lifetime-based probe. J. Am. Chem. Soc. 2020, 142, 7532–7541.
Yang, G. Q.; Liu, Z. J.; Zhang, R. L.; Tian, X. H.; Chen, J.; Han, G. M.; Liu, B. H.; Han, X. Y.; Fu, Y.; Hu, Z. J. et al. A multi-responsive fluorescent probe reveals mitochondrial nucleoprotein dynamics with reactive oxygen species regulation through super-resolution imaging. Angew. Chem., Int. Ed. 2020, 59, 16154–16160.
Wang, H.; He, Z. X.; Yang, Y. Y.; Zhang, J.; Zhang, W.; Zhang, W.; Li, P.; Tang, B. Ratiometric fluorescence imaging of Golgi H2O2 reveals a correlation between Golgi oxidative stress and hypertension. Chem. Sci. 2019, 10, 10876–10880.
Zhang, T.; Jiang, Z. Q.; Chen, L. B.; Pan, C. S.; Sun, S.; Liu, C.; Li, Z. H.; Ren, W. Z.; Wu, A. G.; Huang, P. T. PCN-Fe(III)-PTX nanoparticles for MRI guided high efficiency chemo-photodynamic therapy in pancreatic cancer through alleviating tumor hypoxia. Nano Res. 2020, 13, 273–281.
Wang, M. M.; Wang, P.; Zhang, J.; Hou, H.; Li, C. P.; Jin, Y. D. Pd/Ag nanosheet as a plasmonic sensing platform for sensitive assessment of hydrogen evolution reaction in colloid solutions. Nano Res. 2018, 11, 2093–2103.
Li, Y.; Hou, X. Q.; Dai, X. L.; Yao, Z. L.; Lv, L. L.; Jin, Y. Z.; Peng, X. G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448–6452.
Hanifi, D. A.; Bronstein, N. D.; Koscher, B. A.; Nett, Z.; Swabeck, J. K.; Takano, K.; Schwartzberg, A. M.; Maserati, L.; Vandewal, K.; van de Burgt, Y. et al. Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science 2019, 363, 1199–1202.
Daramola, O. A.; Siwe-Noundou, X.; Tseki, P. F.; Krause, R. W. M. Rapid synthesis of thiol-Co-Capped-CdTe/CdSe/ZnSe core shell–shell nanoparticles: Their optical and structural morphology. Nanomaterials 2021, 11, 1193.
Li, Q. F.; Jin, J.; Lou, F. M.; Tang, D. P. Metal sulfide quantum dots-aggregated PAMAM dendrimer for cadmium ion-selective electrode-based immunoassay of alpha-fetoprotein. Sci. China Chem. 2018, 61, 750–756.
Li, G. P.; Huang, J. S.; Li, Y. Q.; Tang, J. X.; Jiang, Y. Highly bright and low turn-on voltage CsPbBr3 quantum dot LEDs via conjugation molecular ligand exchange. Nano Res. 2019, 12, 109–114.
Guo, W. S.; Yang, W. T.; Wang, Y.; Sun, X. L.; Liu, Z. Y.; Zhang, B. B.; Chang, J.; Chen, X. Y. Color-tunable Gd-Zn-Cu-In-S/ZnS quantum dots for dual modality magnetic resonance and fluorescence imaging. Nano Res. 2014, 7, 1581–1591.
Fuhr, A.; Yun, H. J.; Crooker, S. A.; Klimov, V. I. Spectroscopic and magneto-optical signatures of Cu1+ and Cu2+ defects in copper indium sulfide quantum dots. ACS Nano. 2020, 14, 2212–2223.
Hinterding, S. O. M.; Mangnus, M. J. J.; Prins, P. T.; Jöbsis, H. J.; Busatto, S.; Vanmaekelbergh, D.; de Mello Donega, C.; Rabouw, F. T. Unusual spectral diffusion of single CuInS2 quantum dots sheds light on the mechanism of radiative decay. Nano Lett. 2021, 21, 658–665.
Chen, C. W.; Wu, D. Y.; Chan, Y. C.; Lin, C. C.; Chung, P. H.; Hsiao, M.; Liu, R. S. Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots. J. Phys. Chem. C 2015, 119, 2852–2860.
Liu, J.; Zhao, X. Y.; Xu, H. Y.; Wang, Z. Y.; Dai, Z. H. Amino acid-capped water-soluble near-infrared region CuInS2/ZnS quantum dots for selective cadmium ion determination and multicolor cell imaging. Anal. Chem. 2019, 91, 8987–8993.
Li, L. A.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I. Efficient synthesis of highly luminescent copper indium sulfide-based core/Shell nanocrystals with surprisingly long-lived emission. J. Am. Chem. Soc. 2011, 13, 1176–1179.
Rao, P. H.; Yao, W.; Li, Z. C.; Kong, L.; Zhang, W. Q.; Li, L. Highly stable CuInS2@ZnS: Al core@shell quantum dots: The role of aluminium self-passivation. Chem. Commun. 2015, 51, 8757–8760.
Liu, X.; Zhang, X. S.; Li, L.; Xu, J. P.; Yu, S. L.; Gong, X. K.; Zhang, J. J.; Yin, H. Stable luminescence of CsPbBr3/nCdS core/shell perovskite quantum dots with Al self-passivation layer modification. ACS Appl. Mater. Interfaces 2019, 11, 40923–40931.
Huang, L.; Li, Z. C.; Zhang, C. Y.; Kong, L.; Wang, B.; Huang, S. Q.; Sharma, V.; Ma, H. Y.; Yuan, Q. C.; Liu, Y. et al. Sacrificial oxidation of a self-metal source for the rapid growth of metal oxides on quantum dots towards improving photostability. Chem. Sci. 2019, 10, 6683–6688.
Li, Z. C.; Yao, W.; Kong, L.; Zhao, Y. X.; Li, L. General method for the synthesis of ultrastable core/shell quantum dots by aluminum doping. J. Am. Chem. Soc. 2015, 137, 12430–12433.
Hansen, E. C.; Bertram, S. N.; Yoo, J. J.; Bawendi, M. G. Zinc thiolate enables bright Cu-deficient Cu-In-S/ZnS quantum dots. Small 2019, 15, 1901462.
Berends, A. C.; van der Stam, W.; Hofmann, J. P.; Bladt, E.; Meeldijk, J. D.; Bals, S. de Mello Donega, C. Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS2 nanocrystals. Chem. Mater. 2018, 30, 2400–2413.
Park, S. H.; Hong, A.; Kim, J. H.; Yang, H.; Lee, K.; Jang, H. S. Highly bright yellow-green-emitting CuInS2 colloidal quantum dots with core/shell/shell architecture for white light-emitting diodes. ACS Appl. Mater. Interfaces 2015, 7, 6764–6771.
Nakamura, Y.; Iso, Y.; Isobe, T. Bandgap-tuned CuInS2/ZnS core/shell quantum dots for a luminescent downshifting layer in a crystalline silicon solar module. ACS Appl. Nano Mater. 2020, 3, 3417–3426.
Nakamura, H.; Kato, W.; Uehara, M.; Nose, K.; Omata, T.; Otsuka-Yao-Matsuo, S.; Miyazaki, M.; Maeda, H. Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system. Chem. Mater. 2006, 18, 3330–3335.
Dai, L. W.; Strelow, C.; Kipp, T.; Mews, A.; Benkenstein, I.; Eifler, D.; Vuong, T. H.; Rabeah, J.; McGettrick, J.; Lesyuk, R. et al. Colloidal manganese-doped ZnS nanoplatelets and their optical properties. Chem. Mater. 2021, 33, 275–284.
Virieux, H.; Le Troedec, M.; Cros-Gagneux, A.; Ojo, W.-S.; Delpech, F.; Nayral, C.; Martinez, H.; Chaudret, B. InP/ZnS nanocrystals: Coupling NMR and XPS for fine surface and interface description. J. Am. Chem. Soc. 2012, 134, 19701–19708.
Mahala, C.; Sharma, M. D.; Basu, M. ZnO nanosheets decorated with graphite-like carbon nitride quantum dots as photoanodes in photoelectrochemical water splitting. ACS Appl. Nano Mater. 2020, 3, 1999–2007.
Lv, G. X.; Guo, W. S.; Zhang, W.; Zhang, T. B.; Li, S. Y.; Chen, S. Z.; Eltahan, A. S.; Wang, D. L.; Wang, Y. Q.; Zhang, J. C. et al. Near-infrared emission CuInS/ZnS quantum dots: All-in-one theranostic nanomedicines with intrinsic fluorescence/photoacoustic imaging for tumor phototherapy. ACS Nano 2016, 10, 9637–9645.
Wu, D.; Wang, W.; Ng, T. W.; Huang, G. C.; Xia, D. H.; Yip, H. Y.; Lee, H. K.; Li, G. Y.; An, T. C.; Wong, P. K. Visible-light-driven photocatalytic bacterial inactivation and the mechanism of zinc oxysulfide under LED light irradiation. J. Mater. Chem. A 2016, 4, 1052–1059.
Xu, J.; He, H. X.; Jian, X. X.; Qu, K. Z.; Xu, J. W.; Li, C. W.; Gao, Z. D.; Song, Y. Y. Wireless battery-free generation of electric fields on one-dimensional asymmetric Au/ZnO nanorods for enhanced Raman sensing. Anal. Chem. 2021, 93, 9286–9295.
Aldeek, F.; Balan, L.; Medjahdi, G.; Roques-Carmes, T.; Malval, J. P.; Mustin, C.; Ghanbaja, J.; Schneider, R. Enhanced optical properties of core/shell/shell CdTe/CdS/ZnO quantum dots prepared in aqueous solution. J. Phys. Chem. C 2009, 113, 19458–19467.
Samanta, A.; Deng, Z. T.; Liu, Y. Aqueous synthesis of glutathione-capped CdTe/CdS/ZnS and CdTe/CdSe/ZnS core/shell/shell nanocrystal heterostructures. Langmuir 2012, 28, 8205–8215.
Wang, S.; Zhang, Y. J.; Pang, G. S.; Zhang, Y. W.; Guo, S. J. Tuning the aggregation/disaggregation behavior of graphene quantum dots by structure-switching aptamer for high-sensitivity fluorescent ochratoxin a sensor. Anal. Chem. 2017, 89, 1704–1709.
Liu, J. B.; Li, G.; Yang, X. H.; Wang, K. M.; Li, L.; Liu, W.; Shi, X.; Guo, Y. L. Exciton energy transfer-based quantum dot fluorescence sensing array: “ Chemical noses” for discrimination of different nucleobases. Anal. Chem. 2015, 87, 876–883.