Journal Home > Volume 15 , Issue 5

Organic semiconductors (OSCs) have the advantages of tunable molecular structures, suitable band gaps, and exceptional optoelectronic properties. The π–π stacking ability of OSCs also leads to appealing molecular stacking structure, function, and stability. So far, organic photocatalysts have engaged in homogeneous or heterogeneous photocatalysis in the form of free molecules, supported molecules, or nanostructures. Meanwhile, researches on organic photocatalysts have expanded from small organic molecules to the organic macromolecules, as well as their various nanostructures and nanocomposites including isolated zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), three-dimensional (3D) nanostructures, and their combinations. Therefore, many versatile strategies have been explored to improve photocatalytic ability and practicality either from molecular synthetic modification, crystal, or interface engineering. In this review, we first discuss the photophysical and photochemical processes of organic photocatalysts that govern the ultimate photocatalytic efficiency; we then summarize different forms of organic photocatalysts, their rational design strategies, and mechanistic pathways, as well as their applications in H2 evolution, CO2 reduction, and environmental purification, aiming to highlight the structure/property relationships; we lastly propose ongoing directions and challenges for future development of organic photocatalysts in real use.


menu
Abstract
Full text
Outline
About this article

Organic photocatalysts: From molecular to aggregate level

Show Author's information Chuxuan Yan1,§Jiaqi Dong1,§Yingzhi Chen1,2( )Wenjie Zhou2Yu Peng1Yue Zhang2Lu-ning Wang1,2( )
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, China

§ Chuxuan Yan and Jiaqi Dong contributed equally to this work.

Abstract

Organic semiconductors (OSCs) have the advantages of tunable molecular structures, suitable band gaps, and exceptional optoelectronic properties. The π–π stacking ability of OSCs also leads to appealing molecular stacking structure, function, and stability. So far, organic photocatalysts have engaged in homogeneous or heterogeneous photocatalysis in the form of free molecules, supported molecules, or nanostructures. Meanwhile, researches on organic photocatalysts have expanded from small organic molecules to the organic macromolecules, as well as their various nanostructures and nanocomposites including isolated zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), three-dimensional (3D) nanostructures, and their combinations. Therefore, many versatile strategies have been explored to improve photocatalytic ability and practicality either from molecular synthetic modification, crystal, or interface engineering. In this review, we first discuss the photophysical and photochemical processes of organic photocatalysts that govern the ultimate photocatalytic efficiency; we then summarize different forms of organic photocatalysts, their rational design strategies, and mechanistic pathways, as well as their applications in H2 evolution, CO2 reduction, and environmental purification, aiming to highlight the structure/property relationships; we lastly propose ongoing directions and challenges for future development of organic photocatalysts in real use.

Keywords: heterostructure, nanostructure, heterogeneous photocatalysis, organic photocatalyst, homogeneous photocatalysis

References(173)

1

Li, Q. Q.; Zhao, W. L.; Zhai, Z. C.; Ren, K. X.; Wang, T. Y.; Guan, H.; Shi, H. F. 2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading. J. Mater. Sci. Technol. 2020, 56, 216–226.

2

Chen, Y. Z.; Jiang, D. J.; Gong, Z. Q.; Li, Q. L.; Shi, R. R.; Yang, Z. X.; Lei, Z. Y.; Li, J. Y.; Wang, L. N. Visible-light responsive organic nano-heterostructured photocatalysts for environmental remediation and H2 generation. J. Mater. Sci. Technol. 2020, 38, 93–106.

3

Zhu, D. D.; Zhou, Q. X. Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review. Environ. Nanotechnol., Monit. Manag. 2019, 12, 100255.

4

Singh, P.; Shandilya, P.; Raizada, P.; Sudhaik, A.; Rahmani-Sani, A. Hosseini-Bandegharaei, A. Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arab. J. Chem. 2020, 13, 3498–3520.

5

Rueda-Marquez, J. J.; Levchuk, I.; Ibañez, P. F. Sillanpää, M. A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean Prod. 2020, 258, 120694.

6

Kim, M. G.; Jo, W. K. Visible-light-activated N-doped CQDs/g-C3N4/Bi2WO6 nanocomposites with different component arrangements for the promoted degradation of hazardous vapors. J. Mater. Sci. Technol. 2020, 40, 168–175.

7

Pirhashemi, M.; Habibi-Yangjeh, A. Fabrication of novel ZnO/MnWO4 nanocomposites with p–n heterojunction: Visible-light-induced photocatalysts with substantially improved activity and durability. J. Mater. Sci. Technol. 2018, 34, 1891–1901.

8

Wei, K. X.; Faraj, Y.; Yao, G.; Xie, R. Z.; Lai, B. Strategies for improving perovskite photocatalysts reactivity for organic pollutants degradation: A review on recent progress. Chem. Eng. J. 2021, 414, 128783.

9

Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294–2320.

10

Cao, M. T.; Yang, F. L.; Zhang, Q.; Zhang, J. H.; Zhang, L.; Li, L. F.; Wang, X. H.; Dai, W. L. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production. J. Mater. Sci. Technol. 2021, 76, 189–199.

11

Chen, Y. Z.; Li, W. H.; Li, L.; Wang, L. N. Progress in organic photocatalysts. Rare Met. 2018, 37, 1–12.

12

Kirner, J. T.; Finke, R. G. Water-oxidation photoanodes using organic light-harvesting materials: A review. J. Mater. Chem. A 2017, 5, 19560–19592.

13

Zhang, T.; Lin, W. B. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 2014, 43, 5982–5993.

14

Liu, Z. Z.; Zhao, T. M.; Guan, H. Y.; Zhong, T. Y; He, H. X.; Xing, L. L.; Xue, X. Y. A self-powered temperature-sensitive electronic-skin based on tribotronic effect of PDMS/PANI nanostructures. J. Mater. Sci. Technol. 2019, 35, 2187–2193.

15

Wang, W.; Lu, B.; Deng, W.; Zhang, X. J.; Lu, Z. J.; Wu, D.; Jie, J. S.; Zhang, X. H. Controlled 2D growth of organic semiconductor crystals by suppressing “coffee-ring” effect. Nano Res. 2020, 13, 2478–2484.

16

Xiao, Z. Y.; Zhou, Y.; Xin, X. L.; Zhang, Q. H.; Zhang, L. L.; Wang R. M.; Sun D. F. Iron(III) porphyrin-based porous material as photocatalyst for highly efficient and selective degradation of congo red. Macromol. Chem. Phys. 2016, 217, 599–604.

17

Andreeva, N. A.; Chaban, V. V. Electronic and thermodynamic properties of the amino- and carboxamido-functionalized C-60-based fullerenes: Towards non-volatile carbon dioxide scavengers. J. Chem. Thermodyn. 2018, 116, 1–6.

18

Han, Y. Y.; Ning, W.; Cao, L.; Xu, X. T.; Li, T.; Zhang, F. P.; Pi, L.; Xu, F. Q.; Tian, M. L. Photophysical and electrical properties of organic waveguide nanorods of perylene-3, 4, 9, 10-tetracarboxylic dianhydride. Nano Res. 2016, 9, 1948–1955.

19

Chen, S.; Jacobs, D. L.; Xu, J. K.; Li, Y. X.; Wang, C. Y.; Zang, L. 1D nanofiber composites of perylene diimides for visible-light-driven hydrogen evolution from water. RSC Adv. 2014, 4, 48486–48491.

20

Naseri, A.; Samadi, M.; Pourjavadi, A.; Moshfegh, A. Z.; Ramakrishna, S. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: Recent advances and future development directions. J. Mater. Chem. A 2017, 5, 23406–23433.

21

Zhao, C.; Pan, X.; Wang, Z. H.; Wang, C. C. 1 + 1 > 2: A critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis. Chem. Eng. J. 2021, 417, 128022.

22

Zhao, C.; Zhou, A. W.; Dou, Y. B.; Zhou, J.; Bai, J. Q.; Li, J. R. Dual MOFs template-directed fabrication of hollow-structured heterojunction photocatalysts for efficient CO2 reduction. Chem. Eng. J. 2021, 416, 129155.

23

Luo, H. Z.; Zeng, Z. T.; Zeng, G. M.; Zhang, C.; Xiao, R.; Huang, D. L.; Lai, C.; Cheng, M.; Wang, W. J.; Xiong, W. P. et al. Recent progress on metal-organic frameworks based- and derived-photocatalysts for water splitting. Chem. Eng. J. 2020, 383, 123196.

24

Ma, D. L.; Qian, C.; Qi, Q. Y.; Zhong, Z. R.; Jiang, G. F.; Zhao, X. Effects of connecting sequences of building blocks on reticular synthesis of covalent organic frameworks. Nano Res. 2021, 14, 381–386.

25

Li, Y.; Ling, W.; Liu, X. Y.; Shang, X.; Zhou, P.; Chen, Z. R.; Xu, H.; Huang, X. Metal-organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Res. 2021, 14, 2981–3009.

26

Salcedo-Abraira, P.; Vilela, S. M. F.; Babaryk, A. A.; Cabrero-Antonino, M.; Gregorio, P.; Salles, F.; Navalón, S.; García, H.; Horcajada, P. Nickel phosphonate MOF as efficient water splitting photocatalyst. Nano Res. 2021, 14, 450–457.

27

Xiong, Z. G.; Xu, Y. M. Immobilization of palladium phthalocyaninesulfonate onto anionic clay for sorption and oxidation of 2, 4, 6-trichlorophenol under visible light irradiation. Chem. Mater. 2007, 19, 1452–1458.

28

Li, Y. F.; Zhou, M. H.; Cheng, B.; Shao, Y. Recent advances in g-C3N4-based heterojunction photocatalysts. J. Mater. Sci. Technol. 2020, 56, 1–17.

29

Zhang, J. Y.; Chen, H. L.; Zhao, M.; Liu, G. T.; Wu, J. 2D nanomaterials for tissue engineering application. Nano Res. 2020, 13, 2019–2034.

30

Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.

31

Yang, H.; Bright, J.; Kasani, S.; Zheng, P.; Musho, T.; Chen, B. L.; Huang, L.; Wu, N. Q. Metal-organic framework coated titanium dioxide nanorod array p-n heterojunction photoanode for solar water-splitting. Nano Res. 2019, 12, 643–650.

32

Liang, Q.; Zhang, C. J.; Xu, S.; Zhou, M.; Zhou, Y. T.; Li, Z. Y. In situ growth of CdS quantum dots on phosphorus-doped carbon nitride hollow tubes as active 0D/1D heterostructures for photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2020, 577, 1–11.

33

Liu, B. T.; Vellingiri, K.; Jo, S. H.; Kumar, P.; Ok, Y. S.; Kim, K. H. Recent advances in controlled modification of the size and morphology of metal-organic frameworks. Nano Res. 2018, 11, 4441–4467.

34

Li, X.; Lu, Z. L.; Wang, T. Self-assembly of semiconductor nanoparticles toward emergent behaviors on fluorescence. Nano Res. 2021, 14, 1233–1243.

35

Zhao, C. X.; Chen, Z. P.; Shi, R.; Yang, X. F.; Zhang, T. R. Recent advances in conjugated polymers for visible-light-driven water splitting. Adv. Mater. 2020, 32, 1907296.

36

Romero, N. A.; Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 2016, 116, 10075–166.

37

Marin, M. L.; Santos-Juanes, L.; Arques, A.; Amat, A. M.; Miranda, M. A. Organic photocatalysts for the oxidation of pollutants and model compounds. Chem. Rev. 2012, 112, 1710–1750.

38

Arias-Rotondo, D. M.; McCusker, J. K. The photophysics of photoredox catalysis: A roadmap for catalyst design. Chem. Soc. Rev. 2016, 45, 5803–5820.

39

Mital, M.; Ziora, Z. Biological applications of Ru(II) polypyridyl complexes. Coord. Chem. Rev. 2018, 375, 434–458.

40

Zhao, J. Z.; Wu, W. H.; Sun, J. F.; Guo, S. Triplet photosensitizers: From molecular design to applications. Chem. Soc. Rev. 2013, 42, 5323–5351.

41

Ghosh, I.; Shaikh, R. S.; König, B. Sensitization-initiated electron transfer for photoredox catalysis. Angew. Chem., Int. Ed. 2017, 56, 8544–8549.

42

Liu, Q.; Wu, L. Z. Recent advances in visible-light-driven organic reactions. Natl. Sci. Rev. 2017, 4, 359–380.

43

Guo, S.; Chen, K. K.; Dong, R.; Zhang, Z. M.; Zhao, J. Z.; Lu, T. B. Robust and long-lived excited state Ru(II) polyimine photosensitizers boost hydrogen production. ACS Catal. 2018, 8, 8659–8670.

44

Nakada, A.; Koike, K.; Nakashima, T.; Morimoto, T.; Ishitani, O. Photocatalytic CO2 reduction to formic acid using a Ru(II)-Re(I) supramolecular complex in an aqueous solution. Inorg. Chem. 2015, 54, 1800–1807.

45

Nakajima, T.; Tamaki, Y.; Ueno, K.; Kato, E.; Nishikawa, T.; Ohkubo, K.; Yamazaki, Y.; Morimoto, T.; Ishitani, O. Photocatalytic reduction of low concentration of CO2. J. Am. Chem. Soc. 2016, 138, 13818–13821.

46

Fabry, D. C.; Koizumi, H.; Ghosh, D.; Yamazaki, Y.; Takeda, H.; Tamaki, Y.; Ishitani, O. A Ru(II)-Mn(I) supramolecular photocatalyst for CO2 reduction. Organometallics 2020, 39, 1511–1518.

47

Kitamoto, K.; Sakai, K. Tris(2, 2′-bipyridine)ruthenium derivatives with multiple viologen acceptors: Quadratic dependence of photocatalytic H2 evolution rate on the local concentration of the acceptor site. Chem. -Eur. J. 2016, 22, 12381–12390.

48

Nguyen, J. D.; D'Amato, E. M.; Narayanam, J. M. R.; Stephenson, C. R. J. Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions. Nat. Chem. 2012, 4, 854–859.

49

Shon, J. H.; Sittel, S.; Teets, T. S. Synthesis and characterization of strong cyclometalated iridium photoreductants for application in photocatalytic aryl bromide hydrodebromination. ACS Catal. 2019, 9, 8646–8658.

50

Bodedla, G. B.; Tritton, D. N.; Chen, X.; Zhao, J. Z.; Guo, Z. L.; Leung, K. C. F.; Wong, W. Y.; Zhu, X. J. Cocatalyst-free photocatalytic hydrogen evolution with simple heteroleptic iridium(III) complexes. ACS Appl. Energy Mater. 2021, 4, 3945–3951.

51

Mills, I. N.; Porras, J. A.; Bernhard, S. Judicious design of cationic, cyclometalated Ir(III) complexes for photochemical energy conversion and optoelectronics. Acc. Chem. Res. 2018, 51, 352–364.

52

Cheng, H. C.; Lam, T. L.; Liu, Y. G.; Tang, Z.; Che, C. M. Photoinduced hydroarylation and cyclization of alkenes with luminescent platinum(II) complexes. Angew. Chem., Int. Ed. 2021, 60, 1383–1389.

53

Kuramochi, Y.; Satake, A. Photocatalytic CO2 reductions catalyzed by meso-(1, 10-phenanthrolin-2-yl)-porphyrins having a rhenium(I) tricarbonyl complex. Chem. -Eur. J. 2020, 26, 16365–16373.

54

Cortés, P. A. F.; Marx, M.; Trose, M.; Beller, M. Heteroleptic copper complexes with nitrogen and phosphorus ligands in photocatalysis: Overview and perspectives. Chem Catal. 2021, 1, 298–338.

55

Yi, B.; Wen, X. Y.; Yi, Z. Q.; Xie, Y. J.; Wang, Q.; Tan, J. P. Visible-light-enabled regioselective aerobic oxidative C(sp2)-H thiocyanation of aromatic compounds by Eosin-Y photocatalyst. Tetrahedron Lett. 2020, 61, 152628.

56

Yang, D. T.; Meng, Q. Y.; Zhong, J. J.; Xiang, M.; Liu, Q.; Wu, L. Z. Metal-free desulfonylation reaction through visible-light photoredox catalysis. Eur. J. Org. Chem. 2013, 2013, 7528–7532.

57

Huang, L.; Zhao, J. Z. Iodo-Bodipys as visible-light-absorbing dual-functional photoredox catalysts for preparation of highly functionalized organic compounds by formation of C–C bonds via reductive and oxidative quenching catalytic mechanisms. Rsc Adv. 2013, 3, 23377–23388.

58

Huang, L.; Zhao, J. Z.; Guo, S.; Zhang, C. S.; Ma, J. Bodipy derivatives as organic triplet photosensitizers for aerobic photoorganocatalytic oxidative coupling of amines and photooxidation of dihydroxylnaphthalenes. J. Org. Chem. 2013, 78, 5627–5637.

59

Murtinho, D.; Pineiro, M.; Pereira, M. M.; d’A. Rocha Gonsalves, A. M.; Arnaut, L. G.; da Graça Miguel, M.; Burrows, H. D. Novel porphyrins and a chlorin as efficient singlet oxygen photosensitizers for photooxidation of naphthols or phenols to quinones. J. Chem. Soc., Perkin Trans. 2000, 2, 2441–2447.

60

Ribeiro, S. M.; Serra, A. C.; d’A. Rocha Gonsalves, A. M. Covalently immobilized porphyrins on silica modified structures as photooxidation catalysts. J. Mol. Catal. A:Chem. 2010, 326, 121–127.

61

Bonin, J.; Robert, M.; Routier, M. Selective and efficient photocatalytic CO2 reduction to CO using visible light and an iron-based homogeneous catalyst. J. Am. Chem. Soc. 2014, 136, 16768–16771.

62

Tasso, T. T.; Schlothauer, J. C.; Junqueira, H. C.; Matias, T. A.; Araki, K.; Liandra-Salvador, É.; Antonio, F. C. T.; Homem-de-Mello, P.; Baptista, M. S. Photobleaching efficiency parallels the enhancement of membrane damage for porphyrazine photosensitizers. J. Am. Chem. Soc. 2019, 141, 15547–15556.

63

Carrillo, A. I.; Elhage, A.; Marin, M. L.; Lanterna, A. E. Perylene-grafted silicas: Mechanistic study and applications in heterogeneous photoredox catalysis. Chem. -Eur. J. 2019, 25, 14928–14934.

64

Cai, J. H.; Huang, J. W.; Zhao, P.; Ye, Y. J.; Yu, H. C.; Ji, L. N. Silica microspheres functionalized with porphyrin as a reusable and efficient catalyst for the photooxidation of 1, 5-dihydroxynaphthalene in aerated aqueous solution. J. Photochem. Photobiol. A:Chem. 2009, 207, 236–243.

65

Takeda, H.; Ohashi, M.; Tani, T.; Ishitani, O.; Inagaki, S. Enhanced photocatalysis of rhenium(I) complex by light-harvesting periodic mesoporous organosilica. Inorg. Chem. 2010, 49, 4554–4559.

66

Mori, K.; Kagohara, K.; Yamashita, H. Synthesis of tris(2, 2'-bipyridine)iron(II) complexes in zeolite Y cages: Influence of exchanged alkali metal cations on physicochemical properties and catalytic activity. J. Phys. Chem. C 2008, 112, 2593–2600.

67

Mori, K.; Kawashima, M.; Kagohara, K.; Yamashita, H. Influence of exchanged alkali metal cations within zeolite Y cages on spectroscopic and photooxidation properties of the incorporated tris(2, 2′-bipyridine)ruthenium(II) complexes. J. Phys. Chem. C 2008, 112, 19449–19455.

68

Lang, K.; Bezdička, P.; Bourdelande, J. L.; Hernando, J.; Jirka, I.; Káfuňková, E.; Kovanda, F.; Kubát, P.; Mosinger, J.; Wagnerová, D. M. Layered double hydroxides with intercalated porphyrins as photofunctional materials: Subtle structural changes modify singlet oxygen production. Chem. Mater. 2007, 19, 3822–3829.

69

Demel, J.; Kubát, P.; Jirka, I.; Kovář, P.; Pospíšil, M.; Lang, K. Inorganic-organic hybrid materials: Layered zinc hydroxide salts with intercalated porphyrin sensitizers. J. Phys. Chem. C 2010, 114, 16321–16328.

70

Zigler, D. F.; Morseth, Z. A.; Wang, L.; Ashford, D. L.; Brennaman, M. K.; Grumstrup, E. M.; Brigham, E. C.; Gish, M. K.; Dillon, R. J.; Alibabaei, L. et al. Disentangling the physical processes responsible for the kinetic complexity in interfacial electron transfer of excited Ru(II) polypyridyl dyes on TiO2. J. Am. Chem. Soc. 2016, 138, 4426–4438.

71

Liu, Y. D.; Jiang, Y.; Li, F.; Yu, F. S.; Jiang, W. C.; Xia, L. X. Molecular cobalt salophen catalyst-integrated BiVO4 as stable and robust photoanodes for photoelectrochemical water splitting. J. Mater. Chem. A 2018, 6, 10761–10768.

72

Li, L. Y.; Cui, C. Y.; Su, W. Y.; Wang, Y. X.; Wang, R. H. Hollow click-based porous organic polymers for heterogenization of [Ru(bpy)3]2+ through electrostatic interactions. Nano Res. 2016, 9, 779–786.

73

Luo, Y.; Xu, Z. Y.; Wang, H.; Sun, X. W.; Li, Z. T.; Zhang, D. W. Porous Ru(bpy)32+-linked polymers for recyclable photocatalysis of enantioselective alkylation of aldehydes. ACS Macro Lett. 2020, 9, 90–95.

74

Rakibuddin, M.; Gazi, S.; Ananthakrishnan, R. Iron(II) phenanthroline-resin hybrid as a visible light-driven heterogeneous catalyst for green oxidative degradation of organic dye. Catal. Commun. 2015, 58, 53–58.

75

Héquet, V.; Le Cloirec, P.; Gonzalez, C.; Meunier, B. Photocatalytic degradation of atrazine by porphyrin and phthalocyanine complexes. Chemosphere 2000, 41, 379–386.

76

Bozja, J.; Sherrill, J.; Michielsen, S.; Stojiljkovic, I. Porphyrin-based, light-activated antimicrobial materials. J. Polym. Sci., Part A:Polym. Chem. 2003, 41, 2297–2303.

77

Huang, G.; Guo, C. C.; Tang, S. S. Catalysis of cyclohexane oxidation with air using various chitosan-supported metallotetraphenylporphyrin complexes. J. Mol. Catal. A:Chem. 2007, 261, 125–130.

78

González-Muñoz, D.; Martín-Somer, A.; Strobl, K.; Cabrera, S.; De Pablo, P. J.; Díaz-Tendero, S.; Blanco, M.; Alemán, J. Enhancing visible-light photocatalysis via endohedral functionalization of single-walled carbon nanotubes with organic dyes. ACS Appl. Mater. Interfaces 2021, 13, 24877–24886.

79

Baskaran, D.; Mays, J. W.; Zhang, X. P.; Bratcher, M. S. Carbon nanotubes with covalently linked porphyrin antennae: Photoinduced electron transfer. J. Am. Chem. Soc. 2005, 127, 6916–6917.

80

Jia, F. M.; Wu, L.; Meng, J.; Yang, M.; Kong, H.; Liu, T. J.; Xu, H. Y. Preparation, characterization and fluorescent imaging of multi-walled carbon nanotube-porphyrin conjugate. J. Mater. Chem. 2009, 19, 8950–8957.

81

Lipińska, M. E.; Rebelo, S. L. H.; Pereira, M. F. R.; Figueiredo, J. L.; Freire, C. Photoactive Zn(II)porphyrin-multi-walled carbon nanotubes nanohybrids through covalent β-linkages. Mater. Chem. Phys. 2013, 143, 296–304.

82

Luo, Q.; Ge, R. Y.; Kang, S. Z.; Qin, L. X.; Li, G. D.; Li, X. Q. Fabrication mechanism and photocatalytic activity for a novel graphene oxide hybrid functionalized with tetrakis-(4-hydroxylphenyl)porphyrin and 1-pyrenesulfonic acid. Appl. Surf. Sci. 2018, 427, 15–23.

83

Ge, R. Y.; Li, X. Q.; Kang, S. Z.; Qin, L. X.; Li, G. D. Highly efficient graphene oxide/porphyrin photocatalysts for hydrogen evolution and the interfacial electron transfer. Appl. Catal. B:Environ. 2016, 187, 67–74.

84

Zhang, L. X.; Qin, L. X.; Kang, S. Z.; Li, G. D.; Li, X. Q. Graphene/pyridylporphyrin hybrids interfacially linked with rare earth ions for enhanced photocatalytic hydrogen evolution. ACS Sustainable Chem. Eng. 2019, 7, 8358–8366.

85

Wang, H. X.; Zhou, K. G.; Xie, Y. L.; Zeng, J.; Chai, N. N.; Li, J.; Zhang, H. L. Photoactive graphene sheets prepared by “click” chemistry. Chem. Commun. 2011, 47, 5747–5749.

86

Chen, D. M.; Wang, K. W.; Hong, W. Z.; Zong, R. L.; Yao, W. Q.; Zhu, Y. F. Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Appl. Catal. B: Environ. 2015, 166–167, 366–373.

87

Chen, X.; Lu, W. Y.; Xu, T. F.; Li, N.; Qin, D. D.; Zhu, Z. X.; Wang, G. Q.; Chen, W. X. A bio-inspired strategy to enhance the photocatalytic performance of g-C3N4 under solar irradiation by axial coordination with hemin. Appl. Catal. B:Environ. 2017, 201, 518–526.

88

Zhao, G. X.; Pang, H.; Liu, G. G.; Li, P.; Liu, H. M.; Zhang, H. B.; Shi, L.; Ye, J. H. Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light. Appl. Catal. B:Environ. 2017, 200, 141–149.

89

Zhang, J. J.; Zhao, X.; Wang, Y. B.; Gong, Y.; Cao, D.; Qiao, M. Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C3N4. Appl. Catal. B:Environ. 2018, 237, 976–985.

90

Xie, Y.; Ye, M. H.; Xiong, B.; Liu, B. Y.; Liu, F.; He, H. C.; Yang, L.; Jiang, L.; Dan, Y.; Zhou, Y. Enhanced reactive-oxygen-species generation and photocatalytic efficiency with internal imide structures of different ratio in metal-free perylene-g-C3N4 semiconductors. Appl. Surf. Sci. 2021, 546, 149138.

91

Yang, L. P.; Dong, G. H.; Jacobs, D. L.; Wang, Y. H.; Zang, L.; Wang, C. Y. Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides. J. Cat. 2017, 352, 274–281.

92

Hasobe, T.; Oki, H.; Sandanayaka, A. S. D.; Murata, H. Sonication-assisted supramolecular nanorods of meso-diaryl-substituted porphyrins. Chem. Commun. 2008, 724–726.

93

Zhang, Z. J.; Zhu, Y. F.; Chen, X. J.; Zhang, H. J.; Wang, J. A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution. Adv. Mater. 2019, 31, 1806626.

94

Zhang, Z. J.; Chen, X. J.; Zhang, H. J.; Liu, W. X.; Zhu, W.; Zhu, Y. F. A highly crystalline perylene imide polymer with the robust built-in electric field for efficient photocatalytic water oxidation. Adv. Mater. 2020, 32, 1907746.

95

Zhang, N.; Wang, L.; Wang, H. M.; Cao, R. H.; Wang, J. F.; Bai, F.; Fan, H. Y. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett. 2018, 18, 560–566.

96

Tao, Z. J.; Li, R. F.; Xu, X.; Cao, A. H.; You, W. F.; He, Y.; Huang, W. F.; Kang, L. T.; Chen, X. Y. Controllable synthesis and effects of porphyrin copper nanostructures on photoelectric properties. Cryst. Growth Des. 2021, 21, 3582–3591.

97

Sakuma, T.; Sakai, H.; Hasobe, T. Preparation and structural control of metal coordination-assisted supramolecular architectures of porphyrins. Nanocubes to microrods. Chem. Commun. 2012, 48, 4441–4443.

98

Hu, J. S.; Guo; Liang, H. P.; Wan, L. J.; Jiang, L. Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. J. Am. Chem. Soc. 2005, 127, 17090–17095.

99

Kang, L. T.; Fu, H. B.; Cao, X. Q.; Shi, Q.; Yao, J. N. Controlled morphogenesis of organic polyhedral nanocrystals from cubes, cubooctahedrons, to octahedrons by manipulating the growth kinetics. J. Am. Chem. Soc. 2011, 133, 1895–1901.

100

Gong, X. C.; Milic, T.; Xu, C.; Batteas, J. D.; Drain, C. M. Preparation and characterization of porphyrin nanoparticles. J. Am. Chem. Soc. 2002, 124, 14290–14291.

101

Drain, C. M.; Smeureanu, G.; Patel, S.; Gong, X. C.; Garno, J.; Arijeloye, J. Porphyrin nanoparticles as supramolecular systems. New J. Chem. 2006, 30, 1834–1843.

102

Wang, Z. C.; Li, Z. Y.; Medforth, C. J.; Shelnutt, J. A. Self-assembly and self-metallization of porphyrin nanosheets. J. Am. Chem. Soc. 2007, 129, 2440–2441.

103

Lee, S. J.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. Amphiphilic porphyrin nanocrystals: Morphology tuning and hierarchical assembly. Adv. Mater. 2008, 20, 3543–3549.

104

Zhang, S.; Nagai, K.; Yuan, N. Y.; Ding, J. N. Fullerene C60/phthalocyanine nanocomposites with heterojunction for application to visible-light-responsive photocatalysts. High Power Laser Part. Beams 2015, 27, 024141.

105

Chiu, Y. C.; Chen, B. H.; Jan, D. J.; Tang, S. J.; Chiu, K. C. Growth behavior of cupc films by physical vapor deposition. Cryst. Res. Technol. 2011, 46, 295–299.

106

Park, C.; Park, J. E.; Choi, H. C. Crystallization-induced properties from morphology-controlled organic crystals. Acc. Chem. Res. 2014, 47, 2353–2364.

107

Northrup, J. E.; Tiago, M. L.; Louie, S. G. Surface energetics and growth of pentacene. Phys. Rev. B 2002, 66, 121404.

108

Pernstich, K. P.; Haas, S.; Oberhoff, D.; Goldmann, C.; Gundlach, D. J.; Batlogg, B.; Rashid, A. N.; Schitter, G. Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator. J. Appl. Phys. 2004, 96, 6431–6438.

109

Ji, H. F.; Majithia, R.; Yang, X.; Xu, X. H.; More, K. Self-assembly of perylenediimide and naphthalenediimide nanostructures on glass substrates through deposition from the gas phase. J. Am. Chem. Soc. 2008, 130, 10056–10057.

110

Shin, H. S.; Yoon, S. M.; Tang, Q.; Chon, B.; Joo, T.; Choi, H. C. Highly selective synthesis of C60 disks on graphite substrate by a vapor–solid process. Angew. Chem., Int. Ed. 2008, 47, 693–696.

111

Gesquiere, A. J.; Uwada, T.; Asahi, T.; Masuhara, H.; Barbara, P. F. Single molecule spectroscopy of organic dye nanoparticles. Nano Lett. 2005, 5, 1321–1325.

112

Yuan, X. J.; Floresyona, D.; Aubert, P. H.; Bui, T. T.; Remita, S.; Ghosh, S.; Brisset, F.; Goubard, F.; Remita, H. Photocatalytic degradation of organic pollutant with polypyrrole nanostructures under UV and visible light. Appl. Catal. B:Environ. 2019, 242, 284–292.

113

Li, P.; Xu, G. J.; Wang, N. N.; Guan, B.; Zhu, S. Q.; Chen, P. L.; Liu, M. H. 0D, 1D, and 2D supramolecular nanoassemblies of a porphyrin: Controllable assembly, and dimensionality-dependent catalytic performances. Adv. Funct. Mater. 2021, 31, 2100367.

114

Tian, Z. Y.; Chen, Y.; Yang, W. S.; Yao, J. N.; Zhu, L. Y.; Shuai, Z. G. Low-dimensional aggregates from stilbazolium-like dyes. Angew. Chem., Int. Ed. 2004, 43, 4060–4063.

115

Kakhki, R. M.; Tayebee, R.; Hedayat, S. Phthalhydrazide nanoparticles as new highly reusable organic photocatalyst in the photodegradation of organic and inorganic contaminants. Appl. Organomet. Chem. 2018, 32, e4033.

116

Wang, Y.; Deng, K.; Gui, L. L.; Tang, Y. C.; Zhou, J. W.; Cai, L. Y.; Qiu, J. B.; Ren, D. Y.; Wang, Y. Q. Preparation and characterization of nanoscopic organic semiconductor of oxovanadium phthalocyanine. J. Colloid Interface Sci. 1999, 213, 270–272.

117

Nasir, M. S.; Yang, G. R.; Ayub, I.; Wang, X. J.; Wang, S. L.; Yan, W. Hybridization of g-C3N4 quantum dots with 1D branched TiO2 fiber for efficient visible light-driven photocatalytic hydrogen generation. Int. J. Hydrog. Energy 2020, 45, 13994–14005.

118

Zimmerman, J. L.; Williams, R.; Khabashesku, V. N.; Margrave, J. L. Synthesis of spherical carbon nitride nanostructures. Nano Lett. 2001, 1, 731–734.

119

Wang, T.; Nie, C. Y.; Ao, Z. M.; Wang, S. B.; An, T. C. Recent progress in g-C3N4 quantum dots: Synthesis, properties and applications in photocatalytic degradation of organic pollutants. J. Mater. Chem. A 2020, 8, 485–502.

120

Chava, R. K.; Im, Y.; Kang, M. Nitrogen doped carbon quantum dots as a green luminescent sensitizer to functionalize ZnO nanoparticles for enhanced photovoltaic conversion devices. Mater. Res. Bull. 2017, 94, 399–407.

121

Zhan, Y.; Liu, Z. M.; Liu, Q. Q.; Huang, D.; Wei, Y.; Hu, Y. C.; Lian, X. J.; Hu, C. F. A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications. New J. Chem. 2017, 41, 3930–3938.

122

You, B.; Jiang, N.; Sheng, M. L.; Gul, S.; Yano, J.; Sun, Y. J. High-performance overall water splitting electrocatalysts derived from cobalt-based metal-organic frameworks. Chem. Mater. 2015, 27, 7636–7642.

123

Duan, J. J.; Sun, Y. T.; Chen, S.; Chen, X. J.; Zhao, C. A zero-dimensional nickel, iron-metal-organic framework (MOF) for synergistic N2 electrofixation. J. Mater. Chem. A 2020, 8, 18810–18815.

124

Okubo, M.; Minami, H.; Morikawa, K. Influence of shell strength on shape transformation of micron-sized, monodisperse, hollow polymer particles. Colloid Polym. Sci. 2003, 281, 214–219.

125

Liu, Y. C.; Xu, Z.; Yang, Z.; Zhang, Y. X.; Cui, J.; He, Y. H.; Ye, H. C.; Zhao, K.; Sun, H. M.; Lu, R. et al. Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging. Matter 2020, 3, 180–196.

126

Marciniak, H.; Li, X. Q.; Würthner, F.; Lochbrunner, S. One-dimensional exciton diffusion in perylene bisimide aggregates. J. Phys. Chem. A 2011, 115, 648–654.

127

Alvarez, L.; Fall, F.; Belhboub, A.; Le Parc, R.; Almadori, Y.; Arenal, R.; Aznar, R.; Dieudonné-George, P.; Hermet, P.; Rahmani, A. et al. One-dimensional molecular crystal of phthalocyanine confined into single-walled carbon nanotubes. J. Phys. Chem. A 2015, 119, 5203–5210.

128

Li, H. Y.; Tee, B. C. K.; Cha, J. J.; Cui, Y.; Chung, J. W.; Lee, S. Y.; Bao, Z. N. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. J. Am. Chem. Soc. 2012, 134, 2760–2765.

129

Kang, J. G.; Kim, J.; Jo, J. W.; Heo, J. S.; Kim, M. G.; Kim, Y. H.; Kim, J.; Park, S. K. Photochemical molecular tailoring for efficient diffusion and reorganization of organic nanocrystals for ultra-flexible organic semiconductor arrays. Small 2017, 13, 1602467.

130

Liu, Q.; Chen, C. C.; Yuan, K. J.; Sewell, C. D.; Zhang, Z. G.; Fang, X. M.; Lin, Z. Q. Robust route to highly porous graphitic carbon nitride microtubes with preferred adsorption ability via rational design of one-dimension supramolecular precursors for efficient photocatalytic CO2 conversion. Nano Energy 2020, 77, 105104.

131

Gryn'ova, G.; Nicolaï, A.; Prlj, A.; Ollitrault, P.; Andrienko, D.; Corminboeuf, C. Charge transport in highly ordered organic nanofibrils: Lessons from modelling. J. Mater. Chem. C 2017, 5, 350–361.

132

Kim, S. O.; An, T. K.; Chen, J.; Kang, I.; Kang, S. H.; Chung, D. S.; Park, C. E.; Kim, Y. H.; Kwon, S. K. H-aggregation strategy in the design of molecular semiconductors for highly reliable organic thin film transistors. Adv. Funct. Mater. 2011, 21, 1616–1623.

133

Wang, J.; Liu, D.; Zhou, Y. F.; Guan, S. Y.; Guan, S. Y. Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. Appl. Catal. B:Environ. 2018, 231, 251–261.

134

Wang, J.; Shi, W.; Liu, D.; Zhang, Z. J.; Zhu, Y. F.; Wang, D. Supramolecular organic nanofibers with highly efficient and stable visible light photooxidation performance. Appl. Catal. B:Environ. 2017, 202, 289–297.

135

Raj, M. R.; Margabandu, R.; Mangalaraja, R. V.; Anandan, S. Influence of imide-substituents on the H-type aggregates of perylene diimides bearing cetyloxy side-chains at bay positions. Soft Matter 2017, 13, 9179–9191.

136

Li, S. Y.; Long, T.; Wang, Y.; Yang, X. G. Self-assembly, protonation-dependent morphology, and photophysical properties of perylene bisimide with tertiary amine groups. Dyes Pigm. 2020, 173, 107896.

137

Chen, Y. L.; Feng, Y. J.; Gao, J.; Bouvet, M. Self-assembled aggregates of amphiphilic perylene diimide-based semiconductor molecules: Effect of morphology on conductivity. J. Colloid Interface Sci. 2012, 368, 387–394.

138

O'Brien, G. A.; Quinn, A. J.; Tanner, D. A.; Redmond, G. A single polymer nanowire photodetector. Adv. Mater. 2006, 18, 2379–2383.

139

Kong, K. Y.; Zhang, S. C.; Chu, Y. M.; Hu, Y.; Yu, F. T.; Ye, H. N.; Ding, H. R.; Hua, J. L. A self-assembled perylene diimide nanobelt for efficient visible-light-driven photocatalytic H2 evolution. Chem. Commun. 2019, 55, 8090–8093.

140

Patnaik, S.; Martha, S.; Parida, K. M. An overview of the structural, textural and morphological modulations of g-C3N4 towards photocatalytic hydrogen production. RSC Adv. 2016, 6, 46929–46951.

141

Li, Y.; Li, X.; Zhang, H. W.; Fan, J. J.; Xiang, Q. J. Design and application of active sites in g-C3N4-based photocatalysts. J. Mater. Sci. Technol. 2020, 56, 69–88.

142

Zhong, Q.; Li, Y.; Zhang, G. K. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chem. Eng. J. 2021, 409, 128099.

143

Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem., Int. Ed. 2015, 54, 12868–12884.

144

Ismael, M.; Wu, Y. A mini-review on the synthesis and structural modification of g-C3N4-based materials, and their applications in solar energy conversion and environmental remediation. Sustainable Energy Fuels 2019, 3, 2907–2925.

145

Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

146

Zhao, Z. W.; Sun, Y. J.; Luo, Q.; Dong, F.; Li, H.; Ho, W. K. Mass-controlled direct synthesis of graphene-like carbon nitride nanosheets with exceptional high visible light activity. Less is better. Sci. Rep. 2015, 5, 14643.

147

Xu, J.; Zhang, L. W.; Shi, R.; Zhu, Y. F. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 2013, 1, 14766–14772.

148

Xu, H. F.; Zhu, G.; Hao, B. M. Metal-organic frameworks derived flower-like Co3O4/nitrogen doped graphite carbon hybrid for high-performance sodium-ion batteries. J. Mater. Sci. Technol. 2019, 35, 100–108.

149

Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

150

Wang, X.; Zhang, X. L.; Zhou, W.; Liu, L. Q.; Ye, J. H.; Wang, D. F. An ultrathin porphyrin-based metal-organic framework for efficient photocatalytic hydrogen evolution under visible light. Nano Energy 2019, 62, 250–258.

151

He, T.; Ni, B.; Zhang, S. M.; Gong, Y.; Wang, H. Q.; Gu, L.; Zhuang, J.; Hu, W. P.; Wang, X. Ultrathin 2D zirconium metal-organic framework nanosheets: Preparation and application in photocatalysis. Small 2018, 14, 1703929.

152

Zhao, S. Y.; Li, S.; Zhao, Z. C.; Su, Y. P.; Long, Y. K.; Zheng, Z. Q.; Cui, D. L.; Liu, Y.; Wang, C. F.; Zhang, X. J.; Zhang, Z. T. Microwave-assisted hydrothermal assembly of 2D copper-porphyrin metal-organic frameworks for the removal of dyes and antibiotics from water. Environ. Sci. Pollut. Res. 2020, 27, 39186–39197.

153

Xiao, Y. W.; Guo, W. X.; Chen, H. H.; Li, H. F.; Xu, X. J.; Wu, P.; Shen, Y.; Zheng, B.; Huo, F. W.; Wei, W. D. Ultrathin 2D Cu-porphyrin MOF nanosheets as a heterogeneous catalyst for styrene oxidation. Mater. Chem. Front. 2019, 3, 1580–1585.

154

Chen, R. F.; Shi, J. L.; Ma, Y.; Lin, G. Q.; Lang, X. J.; Wang, C. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew. Chem., Int. Ed. 2019, 58, 6430–6434.

155

Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomäcker, R.; Thomas, A.; Schmidt, J. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 2018, 140, 1423–1427.

156

Wang, X. Y.; Chen, L. J.; Chong, S. Y.; Little, M. A.; Wu, Y. Z.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180–1189.

157

Yang, S. Z.; Hu, W. H.; Zhang, X.; He, P. L.; Pattengale, B.; Liu, C. M.; Cendejas, M.; Hermans, I.; Zhang, X. Y.; Zhang, J. et al. 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction. J. Am. Chem. Soc. 2018, 140, 14614–14618.

158

Chen, Y. Z.; Li, A. X.; Li, Q.; Hou, X. M.; Wang, L. N.; Huang, Z. H. Facile fabrication of three-dimensional interconnected nanoporous N-TiO2 for efficient photoelectrochemical water splitting. J. Mater. Sci. Technol. 2018, 34, 955–960.

159

Liu, W. Q.; Erol, O.; Gracias, D. H. 3D printing of an in situ grown MOF hydrogel with tunable mechanical properties. ACS Appl. Mater. Interfaces 2020, 12, 33267–33275.

160

de Lima, H. H. C.; da Silva, C. T. P.; Kupfer, V. L.; de C. Rinaldi, J.; Kioshima, E. S.; Mandelli, D.; Guilherme, M. R.; Rinaldi, A. W. Synthesis of resilient hybrid hydrogels using UiO-66 MOFs and alginate (hydroMOFs) and their effect on mechanical and matter transport properties. Carbohydr. Polym. 2021, 251, 116977.

161

Chen, Y. Z.; Huang, Z. H.; Yue, M. B.; Kang, F. Y. Integrating porphyrin nanoparticles into a 2D graphene matrix for free-standing nanohybrid films with enhanced visible-light photocatalytic activity. Nanoscale 2014, 6, 978–985.

162

Keum, Y.; Kim, B.; Byun, A.; Park, J. Synthesis and photocatalytic properties of titanium-porphyrinic aerogels. Angew. Chem., Int. Ed. 2020, 59, 21591–21596.

163

Li, X. R.; Li, Y. Y.; Huang, Y. X.; Zhang, T.; Liu, Y. Z.; Yang, B.; He, C. X.; Zhou, X. C.; Zhang, J. M. Organic sponge photocatalysis. Green Chem. 2017, 19, 2925–2930.

164

Chava, R. K.; Do, J.; Kang, M. Strategy for improving the visible photocatalytic H2 evolution activity of 2D graphitic carbon nitride nanosheets through the modification with metal and metal oxide nanocomponents. Appl. Catal. B:Environ. 2019, 248, 538–551.

165

Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217–7223.

166

Xue, J. J.; Ma, S. S.; Zhou, Y. M.; Zhang, Z. W.; He, M. Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Appl. Mater. Interfaces 2015, 7, 9630–9637.

167

Chen, Y. Z.; Zhang, C. Y.; Zhang, X. J.; Ou, X. M.; Zhang, X. H. One-step growth of organic single-crystal p-n nano-heterojunctions with enhanced visible-light photocatalytic activity. Chem. Commun. 2013, 49, 9200–9202.

168

Chen, Y. Z.; Li, A. X.; Yue, X. Q.; Wang, L. N.; Huang, Z. H.; Kang, F. Y.; Volinsky, A. A. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting. Nanoscale 2016, 8, 13228–13235.

169

Chen, Y. Z; Li, A. X.; Jin, M.; Wang, L. N.; Huang, Z. H. Inorganic nanotube/organic nanoparticle hybrids for enhanced photoelectrochemical properties. J. Mater. Sci. Technol. 2017, 33, 728–733.

170

Shao, W.; Wang, L.; Wang, H.; Zhao, Z.; Zhang, X. D.; Jiang, S. L.; Chen, S. C.; Sun, X. S.; Zhang, Q.; Xie, Y. Efficient exciton dissociation in heterojunction interfaces realizing enhanced photoresponsive performance. J. Phys. Chem. Lett. 2019, 10, 2904–2910.

171

Wang, Y. C.; Zhou, J.; Hao, X. Q.; Wang, Y.; Zou, Z. G. Fabricating direct Z-scheme PTCDA/g-C3N4 photocatalyst based on interfacial strong interaction for efficient photooxidation of benzylamine. Appl. Surf. Sci. 2018, 456, 861–870.

172

Zhu, K.; Zhang, M. Q.; Feng, X. Y.; Qin, L. X.; Kang, S. Z.; Li, X. Q. A novel copper-bridged graphitic carbon nitride/porphyrin nanocomposite with dramatically enhanced photocatalytic hydrogen generation. Appl. Catal. B:Environ. 2020, 268, 118434.

173

Zhang, M. Q.; Zhu, K.; Qin, L. X.; Kang, S. Z.; Li, X. Q. Enhanced electron transfer and photocatalytic hydrogen production over the carbon nitride/porphyrin nanohybrid finely bridged by special copper. Catal. Sci. Technol. 2020, 10, 1640–1649.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 September 2021
Revised: 15 November 2021
Accepted: 25 December 2021
Published: 08 February 2022
Issue date: May 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We acknowledge funding from Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB (Nos. BK19AE027 and BK20BE022).

Return