Journal Home > Volume 15 , Issue 5

Electrocatalytic nitrogen reduction reaction (NRR) is an appealing route for the sustainable NH3 synthesis, while developing efficient and durable NRR catalysts remains at the heart of achieving high-efficiency N2-to-NH3 electrocatalysis. Herein, we rationally combine vacancy and interface engineering to design sulfur-deficient Bi2S3 nanoparticles decorated Ti3C2Tx-MXene as an effective NRR catalyst. The developed Bi2S3 nanoparticles decorated Ti3C2Tx-MXene (Bi2S3-x/Ti3C2Tx) naturally contained abundant S-vacancies and exhibited a dramatically boosted NRR activity with an NH3 yield of 68.3 μg·h−1·mg−1 (−0.6 V) and a Faradaic efficiency of 22.5% (−0.4 V), far superior to pure Bi2S3 and Ti3C2Tx, and surpassing almost all ever reported Bi- and MXene-based NRR catalysts. Theoretical investigations unveiled that the exceptional NRR activity of Bi2S3-x/Ti3C2Tx stemmed from its dual-active-center system involving both S-vacancies and interfacial-Bi sites, which could synergistically promote N2 adsorption and *N2H formation to result in an energetic-favorable NRR process.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Sulfur-deficient Bi2S3-x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction

Show Author's information Yaojing Luo§Peng Shen§Xingchuan LiYali GuoKe Chu( )
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

§ Yaojing Luo and Peng Shen contributed equally to this work.

Abstract

Electrocatalytic nitrogen reduction reaction (NRR) is an appealing route for the sustainable NH3 synthesis, while developing efficient and durable NRR catalysts remains at the heart of achieving high-efficiency N2-to-NH3 electrocatalysis. Herein, we rationally combine vacancy and interface engineering to design sulfur-deficient Bi2S3 nanoparticles decorated Ti3C2Tx-MXene as an effective NRR catalyst. The developed Bi2S3 nanoparticles decorated Ti3C2Tx-MXene (Bi2S3-x/Ti3C2Tx) naturally contained abundant S-vacancies and exhibited a dramatically boosted NRR activity with an NH3 yield of 68.3 μg·h−1·mg−1 (−0.6 V) and a Faradaic efficiency of 22.5% (−0.4 V), far superior to pure Bi2S3 and Ti3C2Tx, and surpassing almost all ever reported Bi- and MXene-based NRR catalysts. Theoretical investigations unveiled that the exceptional NRR activity of Bi2S3-x/Ti3C2Tx stemmed from its dual-active-center system involving both S-vacancies and interfacial-Bi sites, which could synergistically promote N2 adsorption and *N2H formation to result in an energetic-favorable NRR process.

Keywords: MXene, electrocatalytic nitrogen reduction, interface engineering, bismuth catalyst, vacancy engineering

References(65)

1

Milton, R. D.; Cai, R.; Abdellaoui, S.; Leech, D.; De Lacey, A. L.; Pita, M.; Minteer, S. D. Bioelectrochemical haber-bosch process: An ammonia-producing H2/N2 fuel cell. Angew. Chem., Int. Ed. 2017, 56, 2680–2683.

2

Xu, T.; Ma, B. Y.; Liang, J.; Yue, L. C.; Liu, Q.; Li, T. S.; Zhao, H. T.; Luo, Y. L.; Lu, S. Y.; Sun, X. P. Recent progress in metal-free electrocatalysts toward ambient N2 reduction reaction. Acta Phys.-Chim. Sin. 2021, 37, 2009043.

3

Liu, Q.; Xu, T.; Luo, Y. L.; Kong, Q. Q.; Li, T. S.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Sun, X. P. Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr. Opin. Electroche. 2021, 29, 100766.

4

Xu, T.; Liang, J.; Li, S. X.; Xu, Z. Q.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Liu, Q.; Shi, X. F.; Asiri, A. M. et al. Recent advances in nonprecious metal oxide electrocatalysts and photocatalysts for N2 reduction reaction under ambient condition. Small Sci. 2021, 1, 2000069.

5

Zhu, X. J.; Mou, S. Y.; Peng, Q. L.; Liu, Q.; Luo, Y. L.; Chen, G.; Gao, S. Y.; Sun, X. P. Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: Recent advances in catalyst development and performance improvement. J. Mater. Chem. A 2020, 8, 1545–1556.

6

Li, Y.; Wang, H. H.; Priest, C.; Li, S. W.; Xu, P.; Wu, G. Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater. 2021, 33, 2000381.

7

Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith III, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

8

Tanifuji, K.; Ohki, Y. Metal-sulfur compounds in N2 reduction and nitrogenase-related chemistry. Chem. Rev. 2020, 120, 5194–5251.

9

Ren, Y. W.; Yu, C.; Tan, X. Y.; Huang, H. L.; Wei, Q. B.; Qiu, J. S. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives. Energy Environ. Sci. 2021, 14, 1176–1193.

10

Yang, C. H.; Zhu, Y. T.; Liu, J. Q.; Qin, Y. C.; Wang, H. Q.; Liu, H. L.; Chen, Y. N.; Zhang, Z. C.; Hu, W. P. Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy 2020, 77, 105126.

11

Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

12

Guo, W. H.; Zhang, K. X.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658–5716.

13

Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo (electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

14

Deng, J.; Iñiguez, J. A.; Liu, C. Electrocatalytic nitrogen reduction at low temperature. Joule 2018, 2, 846–856.

15

Chen, G. F.; Ren, S. Y.; Zhang, L. L.; Cheng, H.; Luo, Y. R.; Zhu, K. H.; Ding, L. X.; Wang, H. H. Advances in electrocatalytic N2 reduction-strategies to tackle the selectivity challenge. Small Methods 2019, 3, 1800337.

16

Yan, D. F.; Li, H.; Chen, C.; Zou, Y. Q.; Wang, S. Y. Defect engineering strategies for nitrogen reduction reactions under ambient conditions. Small Methods 2019, 3, 1800331.

17

Gu, W. C.; Guo, Y. L.; Li, Q. Q.; Tian, Y.; Chu, K. Lithium iron oxide (LiFeO2) for electroreduction of dinitrogen to ammonia. ACS Appl. Mater. Interfaces 2020, 12, 37258–37264.

18

Chu, K.; Liu, Y. P.; Li, Y. B.; Zhang, H.; Tian, Y. Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A 2019, 7, 4389–4394.

19

Li, Q. Q.; Guo, Y. L.; Tian, Y.; Liu, W. M.; Chu, K. Activating VS2 basal planes for enhanced NRR electrocatalysis: The synergistic role of S-vacancies and B dopants. J. Mater. Chem. A 2020, 8, 16195–16202.

20

Li, X. C.; Luo, Y. J.; Li, Q. Q.; Guo, Y. L.; Chu, K. Constructing an electron-rich interface over an Sb/Nb2CTx-MXene heterojunction for enhanced electrocatalytic nitrogen reduction. J. Mater. Chem. A 2021, 9, 15955–15962.

21

Chu, K.; Li, X. C.; Li, Q. Q.; Guo, Y. L.; Zhang, H. Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene. Small 2021, 17, 2102363.

22

Li, X. T.; Tian, Y.; Wang, X. M.; Guo, Y. L.; Chu, K. SnNb2O6 nanosheets for the electrocatalytic NRR: Dual-active-center mechanism of Nb3c and Sn4c-Nb5c dimer. Sustainable Energy Fuels 2021, 5, 4277–4283.

23

Li, S. X.; Wang, Y. Y.; Liang, J.; Xu, T.; Ma, D. W.; Liu, Q.; Li, T. S.; Xu, S. R.; Chen, G.; Asiri, A. M. et al. TiB2 thin film enabled efficient NH3 electrosynthesis at ambient conditions. Mater. Today Phys. 2021, 18, 100396.

24

Wang, T.; Liu, Q.; Li, T. S.; Lu, S. Y.; Chen, G.; Shi, X. F.; Asiri, A. M.; Luo, Y. L.; Ma, D. W.; Sun, X. P. A magnetron sputtered Mo3Si thin film: An efficient electrocatalyst for N2 reduction under ambient conditions. J. Mater. Chem. A 2021, 9, 884–888.

25

Chu, K.; Liu, Y. P.; Cheng, Y. H.; Li, Q. Q. Synergistic boron-dopants and boron-induced oxygen vacancies in MnO2 nanosheets to promote electrocatalytic nitrogen reduction. J. Mater. Chem. A 2020, 8, 5200–5208.

26

Wang, T.; Li, S. X.; He, B. L.; Zhu, X. J.; Luo, Y. L.; Liu, Q.; Li, T. S.; Lu, S. Y.; Ye, C.; Asiri, A. M. et al. Commercial indium-tin oxide glass: A catalyst electrode for efficient N2 reduction at ambient conditions. Chin. J. Catal. 2021, 42, 1024–1029.

27

Xiao, L.; Zhu, S. L.; Liang, Y. Q.; Li, Z. Y.; Wu, S. L.; Luo, S. Y.; Chang, C. T.; Cui, Z. D. Nanoporous nickel-molybdenum oxide with an oxygen vacancy for electrocatalytic nitrogen fixation under ambient conditions. ACS Appl. Mater. Interfaces 2021, 13, 30722–30730.

28

Chu, K.; Liu, Y. P.; Wang, J.; Zhang, H. NiO nanodots on graphene for efficient electrochemical N2 reduction to NH3. ACS Appl. Energy Mater. 2019, 2, 2288–2295.

29

Zhang, G.; Ji, Q. H.; Zhang, K.; Chen, Y.; Li, Z. H.; Liu, H. J.; Li, J. H.; Qu, J. H. Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation. Nano Energy 2019, 59, 10–16.

30

Xue, Z. H.; Zhang, S. N.; Lin, Y. X.; Su, H.; Zhai, G. Y.; Han, J. T.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Electrochemical reduction of N2 into NH3 by donor–acceptor couples of Ni and Au nanoparticles with a 67.8% faradaic efficiency. J. Am. Chem. Soc. 2019, 141, 14976–14980.

31

Wang, M. F.; Liu, S. S.; Qian, T.; Liu, J.; Zhou, J. Q.; Ji, H. Q.; Xiong, J.; Zhong, J.; Yan, C. L. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 2019, 10, 341.

32

Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

33

Liu, Y. Y.; Han, M. M.; Xiong, Q. Z.; Zhang, S. B.; Zhao, C. J.; Gong, W. B.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Dramatically enhanced ambient ammonia electrosynthesis performance by in-operando created Li–S interactions on MoS2 electrocatalyst. Adv. Energy Mater. 2019, 9, 1803935.

34

Yang, X.; Nash, J.; Anibal, J.; Dunwell, M.; Kattel, S.; Stavitski, E.; Attenkofer, K.; Chen, J. G.; Yan, Y. S.; Xu, B. J. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles. J. Am. Chem. Soc. 2018, 140, 13387–13391.

35

Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H. L.; Feng, X. F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.

36

Nazemi, M.; Panikkanvalappil, S. R.; El-Sayed, M. A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy 2018, 49, 316–323.

37

Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.

38

Yao, J. X.; Bao, D.; Zhang, Q.; Shi, M. M.; Wang, Y.; Gao, R.; Yan, J. M.; Jiang, Q. Tailoring oxygen vacancies of BiVO4 toward highly efficient noble-metal-free electrocatalyst for artificial N2 fixation under ambient conditions. Small Methods 2019, 3, 1800333.

39

Hao, Y. C.; Guo, Y.; Chen, L. W.; Shu, M.; Wang, X. Y.; Bu, T. A.; Gao, W. Y.; Zhang, N.; Su, X.; Feng, X. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2019, 2, 448–456.

40

Wang, Y.; Shi, M. M.; Bao, D.; Meng, F. L.; Zhang, Q.; Zhou, Y. T.; Liu, K. H.; Zhang, Y.; Wang, J. Z.; Chen, Z. W. et al. Generating defect-rich bismuth for enhancing the rate of nitrogen electroreduction to ammonia. Angew. Chem., Int. Ed. 2019, 58, 9464–9469.

41

Wang, X. J.; Luo, M.; Lan, J.; Peng, M.; Tan, Y. W. Nanoporous intermetallic Pd3Bi for efficient electrochemical nitrogen reduction. Adv. Mater. 2021, 33, 2007733.

42

Li, L. Q.; Tang, C.; Xia, B. Q.; Jin, H. Y.; Zheng, Y.; Qiao, S. Z. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 2019, 9, 2902–2908.

43

Wang, F. Y.; Lv, X.; Zhu, X. J.; Du, J.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Zheng, B. Z.; Sun, X. P. Bi nanodendrites for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem. Commun. 2020, 56, 2107–2110.

44

Xia, L.; Fu, W. Z.; Zhuang, P. Y.; Cao, Y. D.; Chee, M. O. L.; Dong, P.; Ye, M. X.; Shen, J. F. Engineering abundant edge sites of bismuth nanosheets toward superior ambient electrocatalytic nitrogen reduction via topotactic transformation. ACS Sustainable Chem. Eng. 2020, 8, 2735–2741.

45

Wang, F. Y.; Zhang, L. C.; Wang, T.; Zhang, F.; Liu, Q.; Zhao, H. T.; Zheng, B. Z.; Du, J.; Sun, X. P. In situ derived Bi nanoparticles confined in carbon rods as an efficient electrocatalyst for ambient N2 reduction to NH3. Inorg. Chem. 2021, 60, 7584–7589.

46

Yao, J. X.; Zhou, Y. T.; Yan, J. M.; Jiang, Q. Regulating Fe2(MoO4)3 by Au nanoparticles for efficient N2 electroreduction under ambient conditions. Adv. Energy Mater. 2021, 11, 2003701.

47

Chu, K.; Liu, Y. P.; Li, Y. B.; Guo, Y. L.; Tian, Y. Two-dimensional (2D)/2D interface engineering of MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl. Mater. Interfaces 2020, 12, 7081–7090.

48

Chen, P. Z.; Zhang, N.; Wang, S. B.; Zhou, T. P.; Tong, Y.; Ao, C. C.; Yan, W. S.; Zhang, L. D.; Chu, W. S.; Wu, C. Z. et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 6635–6640.

49

Chu, K.; Gu, W. C.; Li, Q. Q.; Liu, Y. P.; Tian, Y.; Liu, W. M. Amorphization activated FeB2 porous nanosheets enable efficient electrocatalytic N2 fixation. J. Energy Chem. 2021, 53, 82–89.

50

Guo, Y. L.; Cheng, Y. H.; Li, Q. Q.; Chu, K. FeTe2 as an earth-abundant metal telluride catalyst for electrocatalytic nitrogen fixation. J. Energy Chem. 2021, 56, 259–263.

51

Chu, K.; Wang, J.; Liu, Y. P.; Li, Q. Q.; Guo, Y. L. Mo-doped SnS2 with enriched S-vacancies for highly efficient electrocatalytic N2 reduction: The critical role of the Mo-Sn-Sn trimer. J. Mater. Chem. A 2020, 8, 7117–7124.

52

Chu, K.; Wang, F.; Li, Y. B.; Wang, X. H.; Huang, D. J.; Geng, Z. R. Interface and mechanical/thermal properties of graphene/copper composite with Mo2C nanoparticles grown on graphene. Compos. Part A: Appl. Sci. Manuf. 2018, 109, 267–279.

53

Liu, A. M.; Liang, X. Y.; Ren, X. F.; Guan, W. X.; Gao, M. F.; Yang, Y. N.; Yang, Q. Y.; Gao, L. G.; Li, Y. Q.; Ma, T. L. Recent progress in MXene-based materials: Potential high-performance electrocatalysts. Adv. Funct. Mater. 2020, 30, 2003437.

54

Liu, A. M.; Gao, M. F.; Ren, X. F.; Meng, F. N.; Yang, Y. N.; Yang, Q. Y.; Guan, W. X.; Gao, L. G.; Liang, X. Y.; Ma, T. L. A two-dimensional Ru@MXene catalyst for highly selective ambient electrocatalytic nitrogen reduction. Nanoscale 2020, 12, 10933–10938.

55

Zhao, J. X.; Zhang, L.; Xie, X. Y.; Li, X. H.; Ma, Y. J.; Liu, Q.; Fang, W. H.; Shi, X. F.; Cui, G. L.; Sun, X. P. Ti3C2Tx (T = F, OH) MXene nanosheets: Conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3. J. Mater. Chem. A 2018, 6, 24031–24035.

56

Zong, W.; Lai, F. L.; He, G. J.; Feng, J. R.; Wang, W.; Lian, R. Q.; Miao, Y. E.; Wang, G. C.; Parkin, I. P.; Liu, T. X. Sulfur-deficient bismuth sulfide/nitrogen-doped carbon nanofibers as advanced free-standing electrode for asymmetric supercapacitors. Small 2018, 14, 1801562.

57

Chu, K.; Nan, H. F.; Li, Q. Q.; Guo, Y. L.; Tian, Y.; Liu, W. M. Amorphous MoS3 enriched with sulfur vacancies for efficient electrocatalytic nitrogen reduction. J. Energy Chem. 2021, 53, 132–138.

58

Yang, M. Q.; Wang, J.; Wu, H.; Ho, G. W. Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 2018, 14, 1703323.

59

Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

60

Chu, K.; Li, Q. Q.; Cheng, Y. H.; Liu, Y. P. Efficient electrocatalytic nitrogen fixation on FeMoO4 nanorods. ACS Appl. Mater. Interfaces 2020, 12, 11789–11796.

61

Chu, K.; Cheng, Y. H.; Li, Q. Q.; Liu, Y. P.; Tian, Y. Fe-doping induced morphological changes, oxygen vacancies and Ce3+-Ce3+ pairs in CeO2 for promoting electrocatalytic nitrogen fixation. J. Mater. Chem. A 2020, 8, 5865–5873.

62

Chu, K.; Liu, Y. P.; Li, Y. B.; Wang, J.; Zhang, H. Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 31806–31815.

63

Han, Z. S.; Choi, C.; Hong, S.; Wu, T. S.; Soo, Y. L.; Jung, Y.; Qiu, J. S.; Sun, Z. Y. Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction. Appl. Catal. B: Environ. 2019, 257, 117896.

64

Fang, Y. F.; Liu, Z. C.; Han, J. R.; Jin, Z. Y.; Han, Y. Q.; Wang, F. X.; Niu, Y. S.; Wu, Y. P.; Xu, Y. H. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx MXene. Adv. Energy Mater. 2019, 9, 1803406.

65

Zhang, L. L.; Ding, L. X.; Chen, G. F.; Yang, X. F.; Wang, H. H. Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem. 2019, 131, 2638–2642.

File
12274_2022_4097_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 July 2021
Revised: 07 December 2021
Accepted: 26 December 2021
Published: 08 February 2022
Issue date: May 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51761024 and 52161025), Natural Science Foundation of Gansu Province (No. 20JR10RA241), Longyuan Youth Innovative and Entrepreneurial Talents Project (No. [2021]17), and “Longyuan Young Talents” Program of Gansu Province.

Return