Journal Home > Volume 15 , Issue 5

Electrochemical oxygen reduction is a promising approach for the sustainable decentralized production of H2O2, but its viable commercialization is hindered by the insufficient development of efficient electrocatalysts. Here, we demonstrate a promising carbon-based catalyst, consisting of oxygen-rich hollow mesoporous carbon spheres (HMCSs), for selective oxygen reduction to H2O2. The as-prepared HMCS exhibits high onset potential (0.82 V) and half-wave potential (0.76 V), delivering a significant positive shift compared with its oxygen-scarce counterparts and commercial Vulcan carbon. Moreover, excellent H2O2 selectivity (above 95%) and electrochemical stability (7% attenuation after 10 h operation) make this material a state-of-the-art catalyst for electrochemical H2O2 production. The outstanding performance arises from a combination of several aspects, such as porous structure-facilitation of mass transport, large surface area, and proper distribution of oxygen-containing functional groups modification on the surface. Furthermore, the proposed oxygen reduction reaction (ORR) mechanism on HMCS surface reveals that –OH functional groups help promote the first electron transfer process while other oxygen modification facilitate the second electron transfer.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mechanism investigation of enhanced electrochemical H2O2 production performance on oxygen-rich hollow porous carbon spheres

Show Author's information Zhiping DengXiaolei Wang( )
Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada

Abstract

Electrochemical oxygen reduction is a promising approach for the sustainable decentralized production of H2O2, but its viable commercialization is hindered by the insufficient development of efficient electrocatalysts. Here, we demonstrate a promising carbon-based catalyst, consisting of oxygen-rich hollow mesoporous carbon spheres (HMCSs), for selective oxygen reduction to H2O2. The as-prepared HMCS exhibits high onset potential (0.82 V) and half-wave potential (0.76 V), delivering a significant positive shift compared with its oxygen-scarce counterparts and commercial Vulcan carbon. Moreover, excellent H2O2 selectivity (above 95%) and electrochemical stability (7% attenuation after 10 h operation) make this material a state-of-the-art catalyst for electrochemical H2O2 production. The outstanding performance arises from a combination of several aspects, such as porous structure-facilitation of mass transport, large surface area, and proper distribution of oxygen-containing functional groups modification on the surface. Furthermore, the proposed oxygen reduction reaction (ORR) mechanism on HMCS surface reveals that –OH functional groups help promote the first electron transfer process while other oxygen modification facilitate the second electron transfer.

Keywords: oxygen reduction reaction, electrocatalysis, H2O2 production , hollow porous carbon spheres, oxygen functionalization

References(43)

1

Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

2

Fukuzumi, S.; Yamada, Y.; Karlin, K. D. Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell. Electrochim. Acta 2012, 82, 493–511.

3

Murayama, T.; Yamanaka, I. Electrosynthesis of neutral H2O2 solution from O2 and water at a mixed carbon cathode using an exposed solid-polymer-electrolyte electrolysis cell. J. Phys. Chem. C 2011, 115, 5792–5799.

4

Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.

5

Edwards, J. K.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Direct synthesis of hydrogen peroxide from H2 and O2 using supported Au–Pd catalysts. Faraday Discuss. 2008, 138, 225–239.

6

Freakley, S. J.; He, Q.; Harrhy, J. H.; Lu, L.; Crole, D. A.; Morgan, D. J.; Ntainjua, E. N.; Edwards, J. K.; Carley, A. F.; Borisevich, A. Y. et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 2016, 351, 965–968.

7

Zhang, J. Y.; Zhang, H. C.; Cheng, M. J.; Lu, Q. Tailoring the electrochemical production of H2O2: Strategies for the rational design of high-performance electrocatalysts. Small 2020, 16, 1902845.

8

Jiang, K.; Zhao, J. J.; Wang, H. T. Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide. Adv. Funct. Mater. 2020, 30, 2003321.

9

Wang, K.; Huang, J. H.; Chen, H. X.; Wang, Y.; Song, S. Q. Recent advances in electrochemical 2e oxygen reduction reaction for on-site hydrogen peroxide production and beyond. Chem. Commun. 2020, 56, 12109–12121.

10

Wang, W.; Hu, Y. C.; Liu, Y. C.; Zheng, Z. Y.; Chen, S. L. Self-powered and highly efficient production of H2O2 through a Zn-air battery with oxygenated carbon electrocatalyst. ACS Appl. Mater. Interfaces 2018, 10, 31855–31859.

11

Jirkovský, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 Production. J. Am. Chem. Soc. 2011, 133, 19432–19441.

12

Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 2014, 14, 1603–1608.

13

Jiang, Y. Y.; Ni, P. J.; Chen, C. X.; Lu, Y. Z.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.

14

Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Kim, T. R.; Nordlund, D.; Sokaras, D.; Nowak, S.; To, J. W. F.; Higgins, D.; Sinclair, R. et al. Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustainable Chem. Eng. 2018, 6, 311–317.

15

Wu, K. H.; Wang, D.; Lu, X. Y.; Zhang, X. F.; Xie, Z. L.; Liu, Y. F.; Su, B. J.; Chen, J. M.; Su, D. S.; Qi, W. et al. Highly selective hydrogen peroxide electrosynthesis on carbon: In situ interface engineering with surfactants. Chem 2020, 6, 1443–1458.

16

San Roman, D.; Krishnamurthy, D.; Garg, R.; Hafiz, H.; Lamparski, M.; Nuhfer, N. T.; Meunier, V.; Viswanathan, V.; Cohen-Karni, T. Engineering three-dimensional (3D) out-of-plane graphene edge sites for highly selective two-electron oxygen reduction electrocatalysis. ACS Catal. 2020, 10, 1993–2008.

17

Perazzolo, V.; Durante, C.; Pilot, R.; Paduano, A.; Zheng, J.; Rizzi, G. A.; Martucci, A.; Granozzi, G.; Gennaro, A. Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon 2015, 95, 949–963.

18

Sun, Y. Y.; Sinev, I.; Ju, W.; Bergmann, A.; Dresp, S.; Kühl, S.; Spöri, C.; Schmies, H.; Wang, H.; Bernsmeier, D. et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal. 2018, 8, 2844–2856.

19

Iglesias, D.; Giuliani, A.; Melchionna, M.; Marchesan, S.; Criado, A.; Nasi, L.; Bevilacqua, M.; Tavagnacco, C.; Vizza, F.; Prato, M. et al. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 2018, 4, 106–123.

20

Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y. Z.; Yan, X. Z.; Nilsson, E. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859.

21

Zhao, K.; Su, Y.; Quan, X.; Liu, Y. M.; Chen, S.; Yu, H. T. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. J. Catal. 2018, 357, 118–126.

22

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

23

Wan, X. K.; Wu, H. B.; Guan, B. Y.; Luan, D. Y.; Lou, X. W. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Adv. Mater. 2020, 32, 1901349.

24

Lu, Y.; Liang, J. N.; Deng, S. F.; He, Q. M.; Deng, S. Y.; Hu, Y. Z.; Wang, D. L. Hypercrosslinked polymers enabled micropore-dominant N, S co-doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy 2019, 65, 103993.

25

Xiao, X.; Wang, T. J.; Bai, J.; Li, F. M.; Ma, T. Y.; Chen, Y. Enhancing the selectivity of H2O2 electrogeneration by steric hindrance effect. ACS Appl. Mater. Interfaces 2018, 10, 42534–42541.

26

Hu, Y. Z.; Zhang, J. J.; Shen, T.; Li, Z. R.; Chen, K.; Lu, Y.; Zhang, J.; Wang, D. L. Efficient electrochemical production of H2O2 on hollow N-doped carbon nanospheres with abundant micropores. ACS Appl. Mater. Interfaces 2021, 13, 29551–29557.

27

Wang, W.; Chen, W. H.; Miao, P. Y.; Luo, J.; Wei, Z. D.; Chen, S. L. NaCl crystallites as dual-functional and water-removable templates to synthesize a three-dimensional graphene-like macroporous Fe-N-C catalyst. ACS Catal. 2017, 7, 6144–6149.

28

Zhou, W.; Xie, L.; Gao, J. H.; Nazari, R.; Zhao, H. Q.; Meng, X. X.; Sun, F.; Zhao, G. B.; Ma, J. Selective H2O2 electrosynthesis by O-doped and transition-metal-O-doped carbon cathodes via O2 electroreduction: A critical review. Chem. Eng. J. 2021, 410, 128368.

29

Pang, Y. Y.; Wang, K.; Xie, H.; Sun, Y.; Titirici, M. M.; Chai, G. L. Mesoporous carbon hollow spheres as efficient electrocatalysts for oxygen reduction to hydrogen peroxide in neutral electrolytes. ACS Catal. 2020, 10, 7434–7442.

30

Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.

31

Lai, C. L.; Fang, J. Y.; Liu, X. P.; Gong, M. X.; Zhao, T. H.; Shen, T.; Wang, K. L.; Jiang, K.; Wang, D. L. In situ coupling of NiFe nanoparticles with N-doped carbon nanofibers for Zn-air batteries driven water splitting. Appl. Catal. B:Environ. 2021, 285, 119856.

32

Sa, Y. J.; Kim, J. H.; Joo, S. H. Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production. Angew. Chem., Int. Ed. 2019, 58, 1100–1105.

33

Siahrostami, S.; Villegas, S. J.; Bagherzadeh Mostaghimi, A. H.; Back, S.; Farimani, A. B.; Wang, H. T.; Persson, K. A.; Montoya, J. A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide. ACS Catal. 2020, 10, 7495–7511.

34

Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4064–4081.

35

Dong, K.; Liang, J.; Wang, Y. Y.; Xu, Z. Q.; Liu, Q.; Luo, Y. L.; Li, T. S.; Li, L.; Shi, X. F.; Asiri, A. M. et al. Honeycomb carbon nanofibers: A superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 10583–10587.

36

Miao, J.; Zhu, H.; Tang, Y.; Chen, Y. M.; Wan, P. Y. Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water. Chem. Eng. J. 2014, 250, 312–318.

37

Zhong, R. S.; Qin, Y. H.; Niu, D. F.; Tian, J. W.; Zhang, X. S.; Zhou, X. G.; Sun, S. G.; Yuan, W. K. Effect of carbon nanofiber surface functional groups on oxygen reduction in alkaline solution. J. Power Sources 2013, 225, 192–199.

38

Gong, M. X.; Shen, T.; Deng, Z. P.; Yang, H. Y.; Li, Z. R.; Zhang, J. J.; Zhang, R.; Hu, Y. Z.; Zhao, X.; Xin, H. et al. Surface engineering of PdFe ordered intermetallics for efficient oxygen reduction electrocatalysis. Chem. Eng. J. 2021, 408, 127297.

39

Zhao, T. H.; Hu, Y. C.; Gong, M. X.; Lin, R. Q.; Deng, S. F.; Lu, Y.; Liu, X. P.; Chen, Y.; Shen, T.; Hu, Y. Z. et al. Electronic structure and oxophilicity optimization of mono-layer Pt for efficient electrocatalysis. Nano Energy 2020, 74, 104877.

40

Zhang, H. C.; Li, Y. J.; Zhao, Y. S.; Li, G. H.; Zhang, F. Carbon black oxidized by air calcination for enhanced H2O2 generation and effective organics degradation. ACS Appl. Mater. Interfaces 2019, 11, 27846–27853.

41

Quaino, P.; Luque, N. B.; Nazmutdinov, R.; Santos, E.; Schmickler, W. Why is gold such a good catalyst for oxygen reduction in alkaline media? Angew. Chem., Int. Ed. 2012, 51, 12997–13000.

42

Lee, S. Y.; Chung, D. Y.; Lee, M. J.; Kang, Y. S.; Shin, H.; Kim, M. J.; Bielawski, C. W.; Sung, Y. E. Charting the outer helmholtz plane and the role of nitrogen doping in the oxygen reduction reaction conducted in alkaline media using nonprecious metal catalysts. J. Phys. Chem. C 2016, 120, 24511–24520.

43

Ramaswamy, N.; Mukerjee, S. Influence of inner- and outer-sphere electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media. J. Phys. Chem. C 2011, 115, 18015–18026.

File
12274_2022_4095_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 November 2021
Revised: 14 December 2021
Accepted: 22 December 2021
Published: 02 February 2022
Issue date: May 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), through the Discovery Grant Program (No. RGPIN-2018-06725) and the Discovery Accelerator Supplement Grant program (No. RGPAS-2018-522651), and by the New Frontiers in Research Fund-Exploration program (No. NFRFE-2019-00488). The authors also acknowledge support from the University of Alberta and Future Energy Systems (FES).

Return