AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Investigation on the intrinsic wetting thresholds of liquids by measuring the interaction forces of self-assembled monolayers

Yulong Li1,2Shaofan He1,2Zhe Xu3Zhonglong Luo4Hongyan Xiao1Ye Tian1,2,5( )Lei Jiang1,2
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
School of Chemistry and Environment, Beihang University, Beijing 100191, China
School of Mechanical Engineering, Anhui University of Technology, Ma’anshan 243032, China
Ji Hua Laboratory, Foshan 528000, China
Show Author Information

Graphical Abstract

The intrinsic wetting thresholds (IWTs) of liquids were redefined from the perspective of interaction forces between self-assembled monolayers, which differed from 90° defined by Young’s equation.

Abstract

90° is the limitation of lyophilicity and lyophobicity for ideal surface for centuries, but it has been proved to be contradictory on some occasions. The symmetrical surfaces with different surface tensions can attract or repel each other in water. Therefore, at the molecular level, the lyophilicity or lyophobicity is the results of interactions between the liquids and substrates. Here, using atomic force microscope (AFM) to measure interaction forces between symmetrical self-assembled monolayers (SAMs) in different liquids, we found that the SAMs repel each other when the surfaces are hydrophilic whereas attract when hydrophobic in water. The contact angle corresponding to the transition of attraction to repulsion is approximate to 65°, defined as the intrinsic wetting threshold (IWT) of water. For ethylene glycol (EG), dimethyl sulfoxide (DMSO), N,N-dimethyl formamide (DMF), the IWTs could be determined by changes of adhesion forces between SAMs. This research redefined the IWTs for liquids, which is the essential guide to both basic theory and applications of wettability.

Electronic Supplementary Material

Download File(s)
12274_2022_4094_MOESM1_ESM.pdf (5.6 MB)

References

1

Wang, L.; Xiao, F. S. A significant enhancement of catalytic performance by adjusting catalyst wettability. Sci. China Mater. 2018, 61, 1137–1142.

2

Lei, Y. J.; Sun, R. Z.; Zhang, X. C.; Feng, X. J.; Jiang, L. Oxygen-rich enzyme biosensor based on superhydrophobic electrode. Adv. Mater. 2016, 28, 1477–1481.

3

Mi, L.; Yu, J. C.; He, F.; Jiang, L.; Wu, Y. F.; Yang, L. J.; Han, X. F.; Li, Y.; Liu, A. R.; Wei, W. et al. Boosting gas involved reactions at nanochannel reactor with joint gas-solid-liquid interfaces and controlled wettability. J. Am. Chem. Soc. 2017, 139, 10441–10446.

4

Hou, X.; Hu, Y. H.; Grinthal, A.; Khan, M.; Aizenberg, J. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature 2015, 519, 70–73.

5

Wang, Y.; Di, J. C.; Wang, L.; Li, X.; Wang, N.; Wang, B. X.; Tian, Y.; Jiang, L.; Yu, J. H. Infused-liquid-switchable porous nanofibrous membranes for multiphase liquid separation. Nat. Commun. 2017, 8, 575.

6

Xiao, K.; Zhou, Y. H.; Kong, X. Y.; Xie, G. H.; Li, P.; Zhang, Z.; Wen, L. P.; Jiang, L. Electrostatic-charge- and electric-field-induced smart gating for water transportation. ACS Nano 2016, 10, 9703–9709.

7

Ma, S. H.; Ye, Q.; Pei, X. W.; Wang, D. A.; Zhou, F. Antifouling on gecko's feet inspired fibrillar surfaces: Evolving from land to marine and from liquid repellency to algae resistance. Adv. Mater. Interfaces 2015, 2, 1500257.

8

Ma, Y. F.; Ma, S. H.; Wu, Y.; Pei, X. W.; Gorb, S. N.; Wang, Z. K.; Liu, W. M.; Zhou, F. Remote control over underwater dynamic attachment/detachment and locomotion. Adv. Mater. 2018, 30, 1801595.

9

Meng, J. X.; Yang, G.; Liu, L.; Song, Y. Y.; Jiang, L.; Wang, S. T. Cell adhesive spectra along surface wettability gradient from superhydrophilicity to superhydrophobicity. Sci. China Chem. 2017, 60, 614–620.

10

Yu, X.; Wu, X. H.; Si, Y.; Wang, X. F.; Yu, J. Y.; Ding, B. Waterproof and breathable electrospun nanofibrous membranes. Macromol. Rapid Commun. 2019, 40, 1800931.

11

Zhang, J. L.; Han, Y. C. Research and application of wettability gradient surfaces. Acta Polym. Sin. 2012, 12, 1064–1081.

12

Zheng, Y. M.; Bai, H.; Huang, Z. B.; Tian, X. L.; Nie, F. Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643.

13

Young, T. III. An essay on the cohesion of fluids. Phil. Trans. R. Soc. 1805, 95, 65–87.

14

Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994.

15

Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.

16

Nosonovsky, M.; Bhushan, B. Biologically inspired surfaces: Broadening the scope of roughness. Adv. Funct. Mater. 2008, 18, 843–855.

17

Chen, W.; Fadeev, A. Y.; Hsieh, M. C.; Öner, D.; Youngblood, J.; McCarthy, T. J. Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples. Langmuir 1999, 15, 3395–3399.

18

Guo, C. W.; Wang, S. T.; Liu, H.; Feng, L.; Song, Y. L.; Jiang, L. Wettability alteration of polymer surfaces produced by scraping. J. Adhes. Sci. Technol. 2008, 22, 395–402.

19

Wang, L.; Zhao, Y.; Tian, Y.; Jiang, L. A general strategy for the separation of immiscible organic liquids by manipulating the surface tensions of nanofibrous membranes. Angew. Chem., Int. Ed. 2015, 54, 14732–14737.

20

Tian, Y.; Jiang, L. Wetting: Intrinsically robust hydrophobicity. Nat. Mater. 2013, 12, 291–292.

21

Leneveu, D. M.; Rand, R. P.; Parsegian, V. A. Measurement of forces between lecithin bilayers. Nature 1976, 259, 601–603.

22

Israelachvili, J. N.; Pashley, R. M. Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 1983, 306, 249–250.

23

Vogler, E. A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci. 1998, 74, 69–117.

24

Kanduč, M.; Schlaich, A.; Schneck, E.; Netz, R. R. Water-mediated interactions between hydrophilic and hydrophobic surfaces. Langmuir 2016, 32, 8767–8782.

25

Ma, C. D.; Wang, C. X.; Acevedo-Vélez, C.; Gellman, S. H.; Abbott, N. L. Modulation of hydrophobic interactions by proximally immobilized ions. Nature 2015, 517, 347–350.

26

Meyer, E. E.; Rosenberg, K. J.; Israelachvili, J. Recent progress in understanding hydrophobic interactions. Proc. Natl. Acad. Sci. USA 2006, 103, 15739–15746.

27

Tabor, R. F.; Grieser, F.; Dagastine, R. R.; Chan, D. Y. C. The hydrophobic force: Measurements and methods. Phys. Chem. Chem. Phys. 2014, 16, 18065–18075.

28

Owens, D. K.; Wendt, R. C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747.

29

Weisenhorn, A. L.; Maivald, P.; Butt, H. J.; Hansma, P. K. Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys. Rev. B Condens. Matter. 1992, 45, 11226–11232.

30

Cappella, B.; Dietler, G. Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 1999, 34, 1–104.

31
Israelachvili, J. N. Intermolecular and Surface Forces; 3rd ed. Academic Press: Amsterdam, 2011.
32

Brini, E.; Fennell, C. J.; Fernandez-Serra, M.; Hribar-Lee, B.; Lukšič, M.; Dill, K. A. How water's properties are encoded in its molecular structure and energies. Chem. Rev. 2017, 117, 12385–12414.

33

Wallqvist, A.; Berne, B. J. Computer simulation of hydrophobic hydration forces on stacked plates at short range. J. Phys. Chem. 1995, 99, 2893–2899.

34

Lum, K.; Chandler, D.; Weeks, J. D. Hydrophobicity at small and large length scales. J. Phys. Chem. B 1999, 103, 4570–4577.

35

Dishon, M.; Zohar, O.; Sivan, U. Effect of cation size and charge on the interaction between silica surfaces in 1:1,2:1, and 3:1 aqueous electrolytes. Langmuir 2011, 27, 12977–12984.

36

Brubach, J. B.; Mermet, A.; Filabozzi, A.; Gerschel, A.; Roy, P. Signatures of the hydrogen bonding in the infrared bands of water. J. Chem. Phys. 2005, 122, 184509.

37

Lin, K.; Zhou, X. G.; Liu, S. L.; Luo, Y. Identification of free OH and its implication on structural changes of liquid water. Chin. J. Chem. Phys. 2013, 26, 121–126.

38

Morikubo, S.; Sekine, Y.; Ikeda-Fukazawa, T. Structure and dynamics of water in mixed solutions including laponite and PEO. J. Chem. Phys. 2011, 134, 044905.

39

Scherer, J. R.; Go, M. K.; Kint, S. Raman spectra and structure of water from –10° to 90°. deg. J. Phys. Chem. 1974, 78, 1304–1313.

40

Walrafen, G. E. Raman spectral studies of the effects of temperature on water structure. J. Chem. Phys. 1967, 47, 114–126.

41

de Ninno, A.; Castellano, A. C.; del Giudice, E. The supramolecular structure of liquid water and quantum coherent processes in biology. J. Phys. Conf. Ser. 2013, 442, 012031.

Nano Research
Pages 4344-4349
Cite this article:
Li Y, He S, Xu Z, et al. Investigation on the intrinsic wetting thresholds of liquids by measuring the interaction forces of self-assembled monolayers. Nano Research, 2022, 15(5): 4344-4349. https://doi.org/10.1007/s12274-022-4094-z
Topics:

1061

Views

9

Crossref

13

Web of Science

10

Scopus

1

CSCD

Altmetrics

Received: 29 October 2021
Revised: 22 December 2021
Accepted: 22 December 2021
Published: 08 February 2022
© Tsinghua University Press 2022
Return