Journal Home > Volume 15 , Issue 5

Self-cleaning is the key factor that makes superhydrophobic nanostructured materials have wide applications. The self-cleaning effect, however, strongly depends on formations and movement of water droplets on superhydrophobic nanostructured surfaces, which is greatly restricted at low humidity (< 7.6 g·kg−1). Therefore, we propose a self-cleaning method at low humidity in which the pollution is electro-aggregated and driven in the electric field to achieve the aggregation and cleaning large areas. The cleaning efficiency of this method is much higher than that of water droplet roll-off, and will not produce “pollution bands”. A simplified numerical model describing pollution movements is presented. Simulation results are consistent with experimental results. The proposed method realizes the self-cleaning of superhydrophobic nanostructured surfaces above dew point curve for the first time, which extends applications of superhydrophobic nanostructured materials in low humidity, and is expected to solve self-cleaning problems of outdoor objects in low humidity areas (< 5.0 g·kg−1).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-cleaning of superhydrophobic nanostructured surfaces at low humidity enhanced by vertical electric field

Show Author's information Yijie Liu1Yujun Guo1( )Xueqin Zhang1Guoqiang Gao1Chaoqun Shi1Guizao Huang1Pengli Li2Qi Kang2Xingyi Huang2( )Guangning Wu1( )
College of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China
Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, State Key laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai 200240, China

Abstract

Self-cleaning is the key factor that makes superhydrophobic nanostructured materials have wide applications. The self-cleaning effect, however, strongly depends on formations and movement of water droplets on superhydrophobic nanostructured surfaces, which is greatly restricted at low humidity (< 7.6 g·kg−1). Therefore, we propose a self-cleaning method at low humidity in which the pollution is electro-aggregated and driven in the electric field to achieve the aggregation and cleaning large areas. The cleaning efficiency of this method is much higher than that of water droplet roll-off, and will not produce “pollution bands”. A simplified numerical model describing pollution movements is presented. Simulation results are consistent with experimental results. The proposed method realizes the self-cleaning of superhydrophobic nanostructured surfaces above dew point curve for the first time, which extends applications of superhydrophobic nanostructured materials in low humidity, and is expected to solve self-cleaning problems of outdoor objects in low humidity areas (< 5.0 g·kg−1).

Keywords: electric field, self-cleaning, low humidity, electro-aggregation, superhydrophobic nanostructured surface

References(43)

1

Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 2002, 14, 1857–1860.

2

Gao, X. F.; Jiang, L. Water-repellent legs of water striders. Nature 2004, 432, 36.

3

Oh, J.; Dana, C. E.; Hong, S.; Román, J. K; Jo, K. D.; Hong, J. W.; Nguyen, J.; Cropek, D. M.; Alleyne, M.; Miljkovic, N. Exploring the role of habitat on the wettability of cicada wings. ACS Appl. Mater. Interfaces 2017, 9, 27173–27184.

4

Mouterde, T.; Lehoucq, G.; Xavier, S.; Checco, A.; Black, C. T.; Rahman, A.; Midavaine, T.; Clanet, C.; Quéré, D. Antifogging abilities of model nanotextures. Nat. Mater. 2017, 16, 658–663.

5

Wang, D. H.; Sun, Q. Q.; Hokkanen, M. J.; Zhang, C. L.; Lin, F. Y.; Liu, Q.; Zhu, S. P.; Zhou, T. F.; Chang, Q.; He, B. et al. Design of robust superhydrophobic surfaces. Nature 2020, 582, 55–59.

6
Geng, Y.; Jiao, K.; Liu, X.; Ying, P. J.; Odunmbaku, O.; Zhang, Y. X.; Tan, S. C.; Li, L.; Zhang, W.; Li, M. Applications of bio-derived/bio-inspired materials in the field of interfacial solar steam generation. Nano Res., in press, https://doi.org/10.1007/s12274-021-3834-9.
7

Li, Y. F.; Jin, H. Y.; Nie, S. C.; Zhang, P.; Gao, N. K. Dynamic behavior of water droplets and flashover characteristics on a superhydrophobic silicone rubber surface. Appl. Phys. Lett. 2017, 110, 201602.

8

Escher, B. I.; Stapleton, H. M.; Schymanski, E. L. Tracking complex mixtures of chemicals in our changing environment. Science 2020, 367, 388–392.

9

Le, T. H.; Wang, Y.; Liu, L.; Yang, J. N.; Yung, Y. L.; Li, G. H.; Seinfeld, J. H. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702–706.

10

Lin, Z. Z.; Wang, Z.; Zhang, X.; Diao, D. F. Superhydrophobic, photo-sterilize, and reusable mask based on graphene nanosheet-embedded carbon (GNEC) film. Nano Res. 2021, 14, 1110–1115.

11

Lu, Y.; Sthasivam, S.; Song, J. L.; Crick, C. R.; Carmalt, C. J.; Parkin, I. P. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135.

12

Chen, Y. C.; Huang, Z. S.; Yang, H. T. Cicada-wing-inspired self-cleaning antireflection coatings on polymer substrates. ACS Appl. Mater. Interfaces 2015, 7, 25495–25505.

13

Zhang, L. L.; Meng, G.; Fan, G. F.; Chen, K. L.; Wu, Y. L.; Liu, J. High flux photocatalytic self-cleaning nanosheet C3N4 membrane supported by cellulose nanofibers for dye wastewater purification. Nano Res. 2021, 14, 2568–2573.

14

Sun, Q. Q.; Wang, D. H.; Li, Y. N.; Zhang, J. H.; Ye, S. J.; Cui, J. X.; Chen, L. Q.; Wang, Z. K.; Butt, H. J.; Vollmer, D. et al. Surface charge printing for programmed droplet transport. Nat. Mater. 2019, 18, 936–941.

15

Zuo, Y. X.; Zheng, L. Z.; Zhao, C.; Liu, H. Micro-/Nanostructured interface for liquid manipulation and its applications. Small 2020, 16, 1903849.

16

Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8.

17

Wang, R.; Wu, F. F.; Yu, F. F.; Zhu, J.; Gao, X. F.; Jiang, L. Anti-vapor-penetration and condensate microdrop self-transport of superhydrophobic oblique nanowire surface under high subcooling. Nano Res. 2021, 14, 1429–1434.

18

Zhang, J.; Zhu, C. X.; Lv, J.; Zhang, W. C.; Feng, J. Preparation of colorful, infrared-reflective, and superhydrophobic polymer films with obvious resistance to dust deposition. ACS Appl. Mater. Interfaces 2018, 10, 40219–40227.

19

Rao, A. V.; Latthe, S. S.; Mahadik, S. A.; Kappenstein, C. Mechanically stable and corrosion resistant superhydrophobic sol-gel coatings on copper substrate. Appl. Surf. Sci. 2011, 257, 5772–5776.

20

Bumbudsanpharoke, N.; Ko, S. Nanomaterial-based optical indicators: Promise, opportunities, and challenges in the development of colorimetric systems for intelligent packaging. Nano Res. 2019, 12, 489–500.

21

Jadhav, A. J.; Holkar, C. R.; Pinjari, D. V. Anticorrosive performance of super-hydrophobic imidazole encapsulated hollow zinc phosphate nanoparticles on mild steel. Prog. Org. Coat. 2018, 114, 33–39.

22

Wang, L.; Yang, J. Y.; Zhu, Y.; Li, Z. H.; Sheng, T.; Hu, Y. M.; Yang D. Q. A study of the mechanical and chemical durability of ultra-ever dry superhydrophobic coating on low carbon steel surface. Coll. Surf. A Physicochem. Eng. Aspect. 2016, 497, 16–27.

23

Zhu, C. X.; Lin, W. Q.; Chen, L. D.; Lv, J.; Zhang, J.; Feng, J. Deep color, heat-reflective, superhydrophobic and anti-soiling coatings with waterborne silicone emulsion. Sol. Energy Mater. Sol. Cells 2019, 199, 129–135.

24

Goswami, D.; Medda, S. K.; De, G. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 3440–3447.

25

Gauthier, A.; Symon, S.; Clanet, C.; Quéré, D. Water impacting on superhydrophobic macrotextures. Nat. Commun. 2015, 6, 8001.

26

Adera, S.; Raj, R.; Enright, R.; Wang, E. N. Non-wetting droplets on hot superhydrophilic surfaces. Nat. Commun. 2013, 4, 2518.

27

Liu, M. J.; Wang, S. T.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036.

28

Yao, C. W.; Lai, C. L.; Alvarado, J. L.; Zhou, J.; Aung, K. T.; Mejia, J. E. Experimental study on effect of surface vibration on micro textured surfaces with hydrophobic and hydrophilic materials. Appl. Surf. Sci. 2017, 412, 45–51.

29

Hassan, G.; Yilbas, B. S.; Al-Sharafi, A.; Al-Qahtani, H. Self-cleaning of a hydrophobic surface by a rolling water droplet. Sci. Rep. 2019, 9, 5744.

30

Li, J.; Jing, Z. J.; Zha, F.; Yang, Y. X.; Wang, Q. T.; Lei, Z. Q. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes. ACS Appl. Mater. Interfaces 2014, 6, 8868–8877.

31

Seo, D.; Lee, J.; Lee, C.; Nam, Y. The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces. Sci. Rep. 2016, 6, 24276.

32

Choo, S.; Choi, H. J.; Lee, H. Water-collecting behaviour of nanostructured surfaces with special wettability. Appl. Surf. Sci. 2015, 324, 563–568.

33

Wang, N.; Xiong, D. S. Superhydrophobic membranes on metal substrate and their corrosion protection in different corrosive media. Appl. Surf. Sci. 2014, 305, 603–608.

34

Lambley, H.; Schutzius, T. M.; Poulikakos, D. Superhydrophobic surfaces for extreme environmental conditions. Proc. Natl. Acad. Sci. USA 2020, 117, 27188–27194.

35

Li, W.; Tang, X.; Wang, L. Q. Photopyroelectric microfluidics. Sci. Adv. 2020, 6, 1693.

36

Ren, S.; Wang, S. W.; Dong, Z. Q.; Chen, J.; W. Li, L. E. Dynamic behaviors and self-cleaning property of droplet on superhydrophobic coating in uniform DC electric field. Colloids Surf. A Physicochem. Eng. Aspect. 2021, 626, 127056.

37

Li, J.; Wei, Y.; Huang, Z. Y.; Wang, F. P; Yan, X. Z.; Wu, Z. L. Electrohydrodynamic behavior of water droplets on a horizontal super hydrophobic surface and its self-cleaning application. Appl. Surf. Sci. 2017, 403, 133–140.

38

Qing, Y.; Shi, S. L.; Lv, C. J.; Zheng, Q. S. Microskeleton-nanofiller composite with mechanical super-robust superhydrophobicity against abrasion and impact. Adv. Funct. Mater. 2020, 30, 1910665.

39

Lee A.; Moon, M. W.; Lim, H.; Kim, W. D.; Kim, H. Y. Water harvest via dewing. Langmuir 2012, 28, 10183–10191.

40

Py, C.; Reverdy, P.; Doppler, L.; Bico, J.; Roman, B.; Baroud, C. N. Capillary origami: Spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett. 2007, 98, 156103.

41
Zhao, Y. B. Physical Mechanics of Surface and Interface; Science Press: Beijing, China, 2012.
42

Liu, Y. J.; Wu, G. N.; Guo, Y. J.; Zhang, X. Q.; Liu, K.; Kang, Y. Q.; Shi, C. Q. Pollution agglomeration characteristics on insulator and its effect mechanism in DC electric field. Int. J. Elec. Power Energy Syst. 2020, 115, 105447.

43

Gibbons, M. J.; Garivalis, A. I.; O’Shaughnessy, S.; Di Marco, P.; Robinson, A. J. Evaporating hydrophilic and superhydrophobic droplets in electric fields. Int. J. Heat Mass Transfer 2021, 164, 120539.

Video
12274_4093_ESM1.mp4
12274_4093_ESM2.mp4
12274_4093_ESM3.mp4
12274_4093_ESM4.mp4
12274_4093_ESM5.mp4
File
12274_2022_4093_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright

Publication history

Received: 05 December 2021
Revised: 17 December 2021
Accepted: 21 December 2021
Published: 08 February 2022
Issue date: May 2022

Copyright

© Tsinghua University Press 2022
Return