Journal Home > Volume 15 , Issue 4

Ordered amorphous carbon clusters (OACC) transformed from m-xylene solvated C60 (C60·m-xylene) are known as the first crystalline material constructed from amorphous building blocks and have attracted a lot of attention. The formation mechanism and physical properties of this material are of great importance for the design of more materials with such structural characteristics. In this article, the transport and structural properties of C60·m-xylene are systematically investigated under pressure using impedance spectroscopy, four-probe resistance measurements, and Raman spectroscopy. It is found that C60·m-xylene is an insulator at ambient pressure. The resistance decreases sharply starting at the pressure around 8 GPa due to the pressure-induced dimerization of C60 verified by the Raman study. The presence of solvent hinders further polymerization of C60 under higher pressures. The temperature-dependence of resistance exhibits a semiconducting characteristic at > 8–26.9 GPa, and is well described by Mott's three-dimensional variable-range hopping model (3D-VRH), indicating an insulating-to-semiconducting transition accompanied with pressure-induced dimerization. The resistance and hopping energy are both found to decrease monotonically with pressure and reach the minimum near 24 GPa. Above the pressure, resistance and hopping energy values start to rise, suggesting a transition to another semiconducting state, which is attributed to the pressure-induced formation of OACC. The conductivity shows a large hysteresis during decompression from higher than 24 GPa, confirming a different transport behavior of the sample with retained fullerenes versus OACC. The findings of our study suggest that the transport property of fullerene is tunable by introducing solvates and further enhance our understanding of the OACC.


menu
Abstract
Full text
Outline
About this article

Tunable electrical properties of C60m-xylene and the formation of semiconducting ordered amorphous carbon clusters under pressure

Show Author's information Zhongyan Wu1Guoying Gao2Jinbo Zhang3Alexander Soldatov2( )Jaeyong Kim1( )Lin Wang2( )Yongjun Tian2
Department of Physics, Institute for High Pressure Research, Hanyang University, Seoul 04763, Republic of Korea
Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China

Abstract

Ordered amorphous carbon clusters (OACC) transformed from m-xylene solvated C60 (C60·m-xylene) are known as the first crystalline material constructed from amorphous building blocks and have attracted a lot of attention. The formation mechanism and physical properties of this material are of great importance for the design of more materials with such structural characteristics. In this article, the transport and structural properties of C60·m-xylene are systematically investigated under pressure using impedance spectroscopy, four-probe resistance measurements, and Raman spectroscopy. It is found that C60·m-xylene is an insulator at ambient pressure. The resistance decreases sharply starting at the pressure around 8 GPa due to the pressure-induced dimerization of C60 verified by the Raman study. The presence of solvent hinders further polymerization of C60 under higher pressures. The temperature-dependence of resistance exhibits a semiconducting characteristic at > 8–26.9 GPa, and is well described by Mott's three-dimensional variable-range hopping model (3D-VRH), indicating an insulating-to-semiconducting transition accompanied with pressure-induced dimerization. The resistance and hopping energy are both found to decrease monotonically with pressure and reach the minimum near 24 GPa. Above the pressure, resistance and hopping energy values start to rise, suggesting a transition to another semiconducting state, which is attributed to the pressure-induced formation of OACC. The conductivity shows a large hysteresis during decompression from higher than 24 GPa, confirming a different transport behavior of the sample with retained fullerenes versus OACC. The findings of our study suggest that the transport property of fullerene is tunable by introducing solvates and further enhance our understanding of the OACC.

Keywords: high pressure, electrical transport, fullerene solvate, dimerization, insulating-semiconducting transition

References(47)

1

Wang, L.; Liu, B.; Liu, D.; Yao, M.; Hou, Y.; Yu, S.; Cui, T.; Li, D.; Zou, G.; Iwasiewicz, A. et al. Synthesis of thin, rectangular C60 nanorods using m-xylene as a shape controller. Adv. Mater. 2006, 18, 1883–1888.

2

Wang, L.; Liu, B. B.; Li, H.; Yang, W. G.; Ding, Y.; Sinogeikin, S. V.; Meng, Y.; Liu, Z. X.; Zeng, X. C.; Mao, W. L. Long-range ordered carbon clusters: A crystalline material with amorphous building blocks. Science 2012, 337, 825–828.

3

Cui, W.; Yao, M. G.; Liu, S. J.; Ma, F. X.; Li, Q. J.; Liu, R.; Liu, B.; Zou, B.; Cui, T.; Liu, B. B. A new carbon phase constructed by long-range ordered carbon clusters from compressing C70 solvates. Adv. Mater. 2014, 26, 7257–7263.

4

Yao, M. G.; Cui, W.; Du, M. R.; Xiao, J. P.; Yang, X. G.; Liu, S. J.; Liu, R.; Wang, F.; Cui, T.; Sundqvist, B. et al. Tailoring building blocks and their boundary interaction for the creation of new, potentially superhard, carbon materials. Adv. Mater. 2015, 27, 3962–3968.

5

Du, M. R.; Yao, M. G.; Dong, J. J.; Ge, P.; Dong, Q.; Kováts, É.; Pekker, S.; Chen, S. L.; Liu, R.; Liu, B. et al. New ordered structure of amorphous carbon clusters induced by fullerene-cubane reactions. Adv. Mater. 2018, 30, 1706916.

6

Pei, C. Y.; Wang, L. Recent progress on high-pressure and high-temperature studies of fullerenes and related materials. Matter Radiat. Extrem. 2019, 4, 028201.

7

Wang, L. Solvated fullerenes, a new class of carbon materials suitable for high-pressure studies: A review. J. Phys. Chem. Solids 2015, 84, 85–95.

8

Stephens, P. W.; Cox, D.; Lauher, J. W.; Mihaly, L.; Wiley, J. B.; Allemand, P. M.; Hirsch, A.; Holczer, K.; Li, Q.; Thompson, J. D. et al. Lattice structure of the fullerene ferromagnet TDAE-C60. Nature 1992, 355, 331–332.

9

Michaud, F.; Barrio, M.; López, D. O.; Tamarit, J. L.; Agafonov, V.; Toscani, S.; Szwarc, H.; Céolin, R. Solid-state studies on a C60 solvate grown from 1,1,2-trichloroethane. Chem. Mater. 2000, 12, 3595–3602.

10

Barrio, M.; López, D. O.; Tamarit, J. L.; Espeau, P.; Céolin, R.; Allouchi, H. Solid-state studies of C60 solvates formed in the C60-BrCCl3 system. Chem. Mater. 2003, 15, 288–291.

11

Mao, H. K.; Chen, X. J.; Ding, Y.; Li, B.; Wang, L. Solids, liquids, and gases under high pressure. Rev. Mod. Phys. 2018, 90, 015007.

12

Yuan, Y.; Li, Y. W.; Fang, G. Y.; Liu, G. T.; Pei, C. Y.; Li, X.; Zheng, H. Y.; Yang, K.; Wang, L. Stoichiometric evolutions of PH3 under high pressure: Implication for high-Tc superconducting hydrides. Natl. Sci. Rev. 2019, 6, 524–531.

13

Huang, Y. W.; He, Y.; Sheng, H.; Lu, X.; Dong, H. N.; Samanta, S.; Dong, H. L.; Li, X. F.; Kim, D. Y.; Mao, H. K. et al. Li-ion battery material under high pressure: Amorphization and enhanced conductivity of Li4Ti5O12. Natl. Sci. Rev. 2019, 6, 239–246.

14

Sun, Y. G.; Wang, L.; Liu, Y. Z.; Ren, Y. Birnessite-type MnO2 nanosheets with layered structures under high pressure: Elimination of crystalline stacking faults and oriented laminar assembly. Small 2015, 11, 300–305.

15

Lou, Q.; Yang, X. G.; Liu, K. K.; Ding, Z. Z.; Qin, J. X.; Li, Y. Z.; Lv, C. F.; Shang, Y.; Zhang, Y. W.; Zhang, Z. F. et al. Pressure-induced photoluminescence enhancement and ambient retention in confined carbon dots. Nano Res. 2022, 15, 2547–2553.

16

Li, Q.; Parakh, A.; Jin, R. C.; Gu, X. W. Anomalous pressure-dependence in surface-modified silicon-derived nanoparticles. Nano Res. 2021, 14, 4748–4753.

17

Pei, C. Y.; Feng, M. N.; Yang, Z. X.; Yao, M. G.; Yuan, Y.; Li, X.; Hu, B. W.; Shen, M.; Chen, B.; Sundqvist, B. et al. Quasi 3D polymerization in C60 bilayers in a fullerene solvate. Carbon 2017, 124, 499–505.

18

Mizoguchi, K.; Machino, M.; Sakamoto, H.; Kawamoto, T.; Tokumoto, M.; Omerzu, A.; Mihailovic, D. Pressure effect in TDAE-C60 ferromagnet: Mechanism and polymerization. Phys. Rev. B 2001, 63, 140417.

19

Popov, M.; Mordkovich, V.; Perfilov, S.; Kirichenko, A.; Kulnitskiy, B.; Perezhogin, I.; Blank, V. Synthesis of ultrahard fullerite with a catalytic 3D polymerization reaction of C60. Carbon 2014, 76, 250–256.

20

Cui, W.; Yao, M. G.; Liu, D. D.; Li, Q. J.; Liu, R.; Zou, B.; Cui, T.; Liu, B. B. Reversible polymerization in doped fullerides under pressure: The case of C60(Fe(C5H5)2)2. J. Phys. Chem. B 2012, 116, 2643–2650.

21

Iwasa, Y.; Arima, T.; Fleming, R. M.; Siegrist, T.; Zhou, O.; Haddon, R. C.; Rothberg, L. J.; Lyons, K. B.; Carter, H. L.; Hebard, A. F. et al. New phases of C60 synthesized at high pressure. Science 1994, 264, 1570–1572.

22

Núñez-Regueiro, M.; Marques, L.; Hodeau, J. L.; Béthoux, O.; Perroux, M. Polymerized fullerite structures. Phys. Rev. Lett. 1995, 74, 278–281.

23

Marques, L.; Mezouar, M.; Hodeau, J. L.; Núñez-Regueiro, M.; Serebryanaya, N. R.; Ivdenko, V. A.; Blank, V. D.; Dubitsky, G. A. "Debye-Scherrer ellipses" from 3D fullerene polymers: An anisotropic pressure memory signature. Science 1999, 283, 1720–1723.

24

Yamanaka, S.; Kubo, A.; Inumaru, K.; Komaguchi, K.; Kini, N. S.; Inoue, T.; Irifune, T. Electron conductive three-dimensional polymer of cuboidal C60. Phys. Rev. Lett. 2006, 96, 076602.

25

Blank, V. D.; Buga, S. G.; Dubitsky, G. A.; Serebryanaya, N. R.; Popov, M. Y.; Sundqvist, B. High-pressure polymerized phases of C60. Carbon 1998, 36, 319–343.

26
Sundqvist, B. Polymeric fullerene phases formed under pressure. In Fullerene-Based Materials; Prassides, K., Ed.; Springer: Berlin, Heidelberg, 2004; pp 85–126.
27

Álvarez-Murga, M.; Hodeau, J. L. Structural phase transitions of C60 under high-pressure and high-temperature. Carbon 2015, 82, 381–407.

28

Wu, J. H.; Wang, S. Y.; Lei, Z. W.; Guan, R. N.; Chen, M. Q.; Du, P. W.; Lu, Y. L.; Cao, R. G.; Yang, S. F. Pomegranate-like C60@cobalt/nitrogen-codoped porous carbon for high-performance oxygen reduction reaction and lithium-sulfur battery. Nano Res. 2021, 14, 2596–2605.

29
Zhang, X. Y.; Zhou, W.; Liu, Y.; Jin, L. Y.; Huo, J. W.; Yang, Y.; Li, S. M.; Ma, H. J.; Li, J.; Zhen, M. M. et al. Nanosize aminated fullerene for autophagic flux activation and G0/G1 phase arrest in cancer cells via post-transcriptional regulation. Nano Res., in press, https://doi.org/10.1007/s12274-021-3866-1.
30

Regueiro, M. N.; Monceau, P.; Rassat, A.; Bernier, P.; Zahab, A. Absence of a metallic phase at high pressures in C60. Nature 1991, 354, 289–291.

31

Saito, Y.; Shinohara, H.; Kato, M.; Nagashima, H.; Ohkohchi, M.; Ando, Y. Electric conductivity and band gap of solid C60 under high pressure. Chem. Phys. Lett. 1992, 189, 236–240.

32

Qiu, W.; Chowdhury, S.; Hammer, R.; Velisavljevic, N.; Baker, P.; Vohra, Y. K. Physical and mechanical properties of C60 under high pressures and high temperatures. High Press. Res. 2006, 26, 175–183.

33

Fleming, R. M.; Ramirez, A. P.; Rosseinsky, M. J.; Murphy, D. W.; Haddon, R. C.; Zahurak, S. M.; Makhija, A. V. Relation of structure and superconducting transition temperatures in A3C60. Nature 1991, 352, 787–788.

34

Holczer, K.; Klein, O.; Huang, S. M.; Kaner, R. B.; Fu, K. J.; Whetten, R. L.; Diederich, F. Alkali-fulleride superconductors: Synthesis, composition, and diamagnetic shielding. Science 1991, 252, 1154–1157.

35

Rosseinsky, M. J.; Ramirez, A. P.; Glarum, S. H.; Murphy, D. W.; Haddon, R. C.; Hebard, A. F.; Palstra, T. T. M.; Kortan, A. R.; Zahurak, S. M.; Makhija, A. V. Superconductivity at 28 K in RbxC60. Phys. Rev. Lett. 1991, 66, 2830–2832.

36

Tanigaki, K.; Ebbesen, T. W.; Saito, S.; Mizuki, J.; Tsai, J. S.; Kubo, Y.; Kuroshima, S. Superconductivity at 33 K in CsxRbyC60. Nature 1991, 352, 222–223.

37

Wang, L.; Liu, B. B.; Yu, S. D.; Yao, M. G.; Liu, D. D.; Hou, Y. Y.; Cui, T.; Zou, G. T.; Sundqvist, B.; You, H. et al. Highly enhanced luminescence from single-crystalline C60·1 m-xylene nanorods. Chem. Mater. 2006, 18, 4190–4194.

38

Yao, M. G.; Cui, W.; Xiao, J. P.; Chen, S. L.; Cui, J. X.; Liu, R.; Cui, T.; Zou, B.; Liu, B. B.; Sundqvist, B. Pressure-induced transformation and superhard phase in fullerenes: The effect of solvent intercalation. Appl. Phys. Lett. 2013, 103, 071913.

39

Rao, A. M.; Zhou, P.; Wang, K. A.; Hager, G. T.; Holden, J. M.; Wang, Y.; Lee, W. T.; Bi, X. X.; Eklund, P. C.; Cornett, D. S. et al. Photoinduced polymerization of solid C60 films. Science 1993, 259, 955–957.

40

Abrantes, J. C. C.; Labrincha, J. A.; Frade, J. R. An alternative representation of impedance spectra of ceramics. Mater. Res. Bull. 2000, 35, 727–740.

41

Moshary, F.; Chen, N. H.; Silvera, I. F.; Brown, C. A.; Dorn, H. C.; de Vries, M. S.; Bethune, D. S. Gap reduction and the collapse of solid C60 to a new phase of carbon under pressure. Phys. Rev. Lett. 1992, 69, 466–469.

42

Snoke, D. W.; Raptis, Y. S.; Syassen, K. Vibrational modes, optical excitations, and phase transition of solid C60 at high pressures. Phys. Rev. B 1992, 45, 14419–14422.

43

Liu, C. L.; Han, Y. H.; Wang, Y.; Peng, G.; Wu, B. J.; Gao, C. X. Preparation and characterization of boron doped diamond electrodes on diamond anvil for in situ electrical measurements under high pressure. Diam. Relat. Mater. 2011, 20, 250–253.

44
Mott, N. F.; Davis, E. A. Electronic Processes in Non-Crystalline Materials, 2nd ed.; Clarendon Press: Oxford, 2012.
45

Bethune, D. S.; Meijer, G.; Tang, W. C.; Rosen, H. J.; Golden, W. G.; Seki, H.; Brown, C. A.; de Vries, M. S. Vibrational Raman and infrared spectra of chromatographically separated C60 and C70 fullerene clusters. Chem. Phys. Lett. 1991, 179, 181–186.

46

Lebedkin, S.; Gromov, A.; Giesa, S.; Gleiter, R.; Renker, B.; Rietschel, H.; Krätschmer, W. Raman scattering study of C120, a C60 dimer. Chem. Phys. Lett. 1998, 285, 210–215.

47

Mases, M.; You, S. J.; Weir, S. T.; Evans, W. J.; Volkova, Y.; Tebenkov, A.; Babushkin, A. N.; Vohra, Y. K.; Samudrala, G.; Soldatov, A. V. In situ electrical conductivity and Raman study of C60 tetragonal polymer at high pressures up to 30 GPa. Phys. Stat. Sol. B 2010, 247, 3068–3071.

Publication history
Copyright
Acknowledgements

Publication history

Published: 06 January 2022
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52090020 and 11874076), and National Research Foundation of Korea (Nos. 2016K1A4A3914691 and 2018R1D1A1B07049811).

Return