AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Anti-cancer liposomal chemophototherapy using bilayer-localized photosensitizer and cabazitaxel

Boyang Sun1,2Sanjana Ghosh2Xuedan He2Wei-Chiao Huang2Breandan Quinn2Meiling Tian1Dushyant Jahagirdar3Moustafa T. Mabrouk2Joaquin Ortega3Yumiao Zhang4( )Shuai Shao1( )Jonathan F. Lovell2( )
Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A0C7, Canada
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300000, China
Show Author Information

Graphical Abstract

Cabazitaxel was loaded into the bilayer of porphyrin-phospholipid (PoP) liposomes and demonstrated synergy for combination chemotherapy and photodynamic therapy.

Abstract

Photodynamic therapy (PDT) is a non-invasive tumor ablation modality that can be enhanced in combination with concurrent chemotherapy. Previously, we demonstrated that liposomes containing a bilayer-anchored photosensitizer (porphyrin-phospholipid; PoP) can be loaded with drugs in their aqueous core to improve drug delivery and tumor ablation upon target tissue irradiation with red-light. In the present work, we demonstrate that this concept can be extended to drugs loaded within the hydrophobic bilayer of liposomes. Cabazitaxel (CTX) is a potent second generation taxane anti-cancer drug that was loaded in the bilayer of liposomes also containing 0.1 molar% PoP, generating CTX-loaded PoP liposomes (CTX-PoP-Lip). CTX-PoP-Lip showed unilamellar vesicle morphology, and exhibited integrity in storage and serum, while maintaining drug stability under laser irradiation. In vitro cell killing evaluation showed that red-light laser irradiation induced cytotoxicity in cells incubated with CTX-PoP-Lip, compared to control treatments. In vivo pharmacokinetic analysis revealed that following intravenous administration to mice, CTX and PoP exhibited somewhat altered circulation profiles, suggesting that the CTX may have exchanged with serum factors in blood. Nevertheless, when a single treatment of CTX-PoP-Lip with laser irradiation was administered to mice bearing human MIA Paca-2 tumors, tumors were effectively ablated whereas the equivalent chemotherapy and PDT monotherapies were ineffective. These results demonstrate the versatility of liposome delivery systems for achieving tumor ablation with chemophototherapy.

Electronic Supplementary Material

Download File(s)
12274_2022_4090_MOESM1_ESM.pdf (824.1 KB)

References

1

Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674.

2

Luo, D. D.; Carter, K. A.; Miranda, D.; Lovell, J. F. Chemophototherapy: An emerging treatment option for solid tumors. Adv. Sci. 2017, 4, 1600106.

3

Carter, K. A.; Luo, D. D.; Geng, J. M.; Stern, S. T.; Lovell, J. F. Blood interactions, pharmacokinetics, and depth-dependent ablation of rat mammary tumors with photoactivatable, liposomal doxorubicin. Mol. Cancer Ther. 2019, 18, 592–601.

4

Luo, D. D.; Carter, K. A.; Razi, A.; Geng, J. M.; Shao, S.; Giraldo, D.; Sunar, U.; Ortega, J.; Lovell, J. F. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials 2016, 75, 193–202.

5

Luo, D. D.; Li, N.; Carter, K. A.; Lin, C. Y.; Geng, J. M.; Shao, S.; Huang, W. C.; Qin, Y. L.; Atilla-Gokcumen, G. E.; Lovell, J. F. Rapid light-triggered drug release in liposomes containing small amounts of unsaturated and porphyrin-phospholipids. Small 2016, 12, 3039–3047.

6

Carter, K. A.; Wang, S.; Geng, J. M.; Luo, D. D.; Shao, S.; Lovell, J. F. Metal chelation modulates phototherapeutic properties of mitoxantrone-loaded porphyrin-phospholipid liposomes. Mol. Pharmaceutics 2016, 13, 420–427.

7

Luo, D. D.; Geng, J. M.; Li, N. S.; Carter, K. A.; Shao, S.; Atilla-Gokcumen, G. E.; Lovell, J. F. Vessel-targeted chemophototherapy with cationic porphyrin-phospholipid liposomes. Mol. Cancer Ther. 2017, 16, 2452–2461.

8

Chitgupi, U.; Shao, S.; Carter, K. A.; Huang, W. C.; Lovell, J. F. Multicolor liposome mixtures for selective and selectable cargo release. Nano Lett. 2018, 18, 1331–1336.

9

Miranda, D.; Carter, K.; Luo, D. D.; Shao, S.; Geng, J. M.; Li, C. N.; Chitgupi, U.; Turowski, S. G.; Li, N. S.; Atilla-Gokcumen, G. E. et al. Multifunctional liposomes for image-guided intratumoral chemo-phototherapy. Adv. Healthc. Mater. 2017, 6, 1700253.

10

Carter, K. A.; Luo, D. D.; Razi, A.; Geng, J. M.; Shao, S.; Ortega, J.; Lovell, J. F. Sphingomyelin liposomes containing porphyrin-phospholipid for irinotecan chemophototherapy. Theranostics 2016, 6, 2329–2336.

11

Ghosh, S.; Carter, K. A.; Lovell, J. F. Liposomal formulations of photosensitizers. Biomaterials 2019, 218, 119341.

12

Chang, E. L.; Bu, J. C.; Ding, L. L.; Lou, J. W. H.; Valic, M. S.; Cheng, M. H. Y.; Rosilio, V.; Chen, J.; Zheng, G. Porphyrin-lipid stabilized paclitaxel nanoemulsion for combined photodynamic therapy and chemotherapy. J. Nanobiotechnol. 2021, 19, 154.

13

Wang, X. X.; Tong, J. W.; He, Z. Y.; Yang, X. L.; Meng, F. L.; Liang, H. G.; Zhang, X. P.; Luo, L. Paclitaxel-potentiated photodynamic theranostics for synergistic tumor ablation and precise anticancer efficacy monitoring. ACS Appl. Mater. Interfaces 2020, 12, 5476–5487.

14
Yang, X. Y.; Shi, X. Q.; Zhang, Y. N; Xu, J. K.; Ji, J. B.; Ye, L.; Yi, F.; Zhai, G. X. Photo-triggered self-destructive ROS-responsive nanoparticles of high paclitaxel/chlorin e6 co-loading capacity for synergetic chemo-photodynamic therapy. J. Control. Release 2020, 323, 333–349.
15

Chang, J. E.; Cho, H. J.; Yi, E.; Kim, D. D.; Jheon, S. Hypocrellin B and paclitaxel-encapsulated hyaluronic acid-ceramide nanoparticles for targeted photodynamic therapy in lung cancer. J. Photochem. Photobiol. B:Biol. 2016, 158, 113–121.

16

Gaio, E.; Conte, C.; Esposito, D.; Miotto, G.; Quaglia, F.; Moret, F.; Reddi, E. Co-delivery of docetaxel and disulfonate tetraphenyl chlorin in one nanoparticle produces strong synergism between chemo- and photodynamic therapy in drug-sensitive and -resistant cancer cells. Mol. Pharmaceutics 2018, 15, 4599–4611.

17

Li, W. T.; Peng, J. R.; Tan, L. W.; Wu, J.; Shi, K.; Qu, Y.; Wei, X. W.; Qian, Z. Y. Mild photothermal therapy/photodynamic therapy/chemotherapy of breast cancer by Lyp-1 modified Docetaxel/IR820 Co-loaded micelles. Biomaterials 2016, 106, 119–133.

18

Wang, D.; Zhang, S. P.; Zhang, T.; Wan, G. Y.; Chen, B. W.; Xiong, Q. Q.; Zhang, J.; Zhang, W. X.; Wang, Y. S. Pullulan-coated phospholipid and Pluronic F68 complex nanoparticles for carrying IR780 and paclitaxel to treat hepatocellular carcinoma by combining photothermal therapy/photodynamic therapy and chemotherapy. Int. J. Nanomedicine 2017, 12, 8649–8670.

19

Zhang, Y. C.; Feng, L. Z.; Wang, J.; Tao, D. L.; Liang, C.; Cheng, L.; Hao, E. H.; Liu, Z. Surfactant-stripped micelles of near infrared dye and paclitaxel for photoacoustic imaging guided photothermal-chemotherapy. Small 2018, 14, 1802991.

20

Vrignaud, P.; Sémiond, D.; Lejeune, P.; Bouchard, H.; Calvet, L.; Combeau, C.; Riou, J. F.; Commerçon, A.; Lavelle, F.; Bissery, M. C. Preclinical antitumor activity of cabazitaxel, a semisynthetic taxane active in taxane-resistant tumors. Clin. Cancer Res. 2013, 19, 2973–2983.

21

De Bono, J. S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J. P.; Kocak, I.; Gravis, G.; Bodrogi, I.; Mackenzie, M. J.; Shen, L. J. et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet 2010, 376, 1147–1154.

22

Zhou, G. M.; Jin, X. Y.; Zhu, P.; Yao, J. U.; Zhang, Y. X.; Teng, L. S.; Lee, R. J.; Zhang, X. M.; Hong, W. Human serum albumin nanoparticles as a novel delivery system for cabazitaxel. Anticancer Res. 2016, 36, 1649–1656.

23

Qu, N.; Lee, R. J.; Sun, Y. T.; Cai, G. S.; Wang, J. Y.; Wang, M. Q.; Lu, J. H.; Meng, Q. F.; Teng, L. R.; Wang, D. et al. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer. Int. J. Nanomedicine 2016, 11, 3451–3459.

24

Sun, Y. T.; Zhao, Y. R.; Teng, S. S.; Hao, F.; Zhang, H.; Meng, F. C.; Zhao, X. T.; Zheng, X. L.; Bi, Y.; Yao, Y. C. Folic acid receptor-targeted human serum albumin nanoparticle formulation of cabazitaxel for tumor therapy. Int. J. Nanomedicine 2018, 14, 135–148.

25

Qu, N.; Sun, Y. T.; Xie, J.; Teng, L. S. Preparation and evaluation of in vitro self-assembling HSA nanoparticles for cabazitaxel. Anticancer Agents Med. Chem. 2017, 17, 294–300.

26

Meng, F. C.; Sun, Y. T.; Lee, R. J.; Wang, G. Y.; Zheng, X. L.; Zhang, H.; Fu, Y. G.; Yan, G. J.; Wang, Y. F.; Deng, W. Y. et al. Folate receptor-targeted albumin nanoparticles based on microfluidic technology to deliver cabazitaxel. Cancers 2019, 11, 1571.

27

Kommineni, N.; Mahira, S.; Domb, A. J.; Khan, W. Cabazitaxel-loaded nanocarriers for cancer therapy with reduced side effects. Pharmaceutics 2019, 11, 141.

28

Zeng, Y. Y.; Zeng, Y. J.; Zhang, N. N.; Li, C. X.; Xie, T.; Zeng, Z. W. The preparation, determination of a flexible complex liposome co-loaded with cabazitaxel and β-elemene, and animal pharmacodynamics on paclitaxel-resistant lung adenocarcinoma. Molecules 2019, 24, 1697.

29

Mahira, S.; Kommineni, N.; Husain, G. M.; Khan, W. Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: A new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomed. Pharmacother. 2019, 110, 803–817.

30
Ahmad, A.; Sheikh, S.; Paithankar, M.; Deshpande, G.; Lakshmaiah, K. C.; Maksud, T. M.; Khatri, A.; Manjunath, K.; Kale, P.; Patel, R. et al. Detergent and alcohol free formulation of cabazitaxel: Safety and pharmacokinetics of escalating dose of cabazitaxel lipid suspension (CLS) in patients with advanced solid maliganancies. J. Clin. Oncol. 2016, 34, e14019–e14019.
31

Chen, W. J.; Guo, M.; Wang, S. L. Anti prostate cancer using PEGylated bombesin containing, cabazitaxel loading nano-sized drug delivery system. Drug Dev. Ind. Pharm. 2016, 42, 1968–1976.

32

Ren, T. Y.; Wang, Q.; Xu, Y.; Cong, L.; Gou, J. X.; Tao, X. G.; Zhang, Y.; He, H. B.; Yin, T.; Zhang, H. T. et al. Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium barriers using surface polyethylene oxide (PEO) decorated positively charged polymer-lipid hybrid nanoparticles. J. Control. Release 2018, 269, 423–438.

33

Kommineni, N.; Saka, R.; Bulbake, U.; Khan, W. Cabazitaxel and thymoquinone co-loaded lipospheres as a synergistic combination for breast cancer. Chem. Phys. Lipids 2019, 224, 104707.

34

Zhao, Z.; Li, Y.; Liu, H.; Jain, A.; Patel, P. V.; Cheng, K. Co-delivery of IKBKE siRNA and cabazitaxel by hybrid nanocomplex inhibits invasiveness and growth of triple-negative breast cancer. Sci. Adv. 2020, 6, eabb0616.

35

Han, X. X.; Chen, D.; Sun, J.; Zhou, J. S.; Li, D.; Gong, F. R.; Shen, Y. L. A novel cabazitaxel-loaded polymeric micelle system with superior in vitro stability and long blood circulation time. J. Biomater. Sci. Polym. Ed. 2016, 27, 626–642.

36

Zhuang, B.; Du, L.; Xu, H. X.; Xu, X. L.; Wang, C.; Fan, Y. F.; Cong, M. Y.; Yin, J. Q.; Li, H. X.; Guan, H. S. Self-assembled micelle loading cabazitaxel for therapy of lung cancer. Int. J. Pharm. 2016, 499, 146–155.

37

Mahdaviani, P.; Bahadorikhalili, S.; Navaei-Nigjeh, M.; Vafaei, S. Y.; Esfandyari-Manesh, M.; Abdolghaffari, A. H.; Daman, Z.; Atyabi, F.; Ghahremani, M. H.; Amini, M. et al. Peptide functionalized poly ethylene glycol-poly caprolactone nanomicelles for specific cabazitaxel delivery to metastatic breast cancer cells. Mater. Sci. Eng. C 2017, 80, 301–312.

38

He, B.; Tan, T.; Wang, H.; Hu, H. Y.; Wang, Z. W.; Wang, J.; Li, J.; Sun, K. X.; Zhang, Z. W.; Li, Y. P. Rational design of tumor microenvironment-activated micelles for programed targeting of breast cancer metastasis. Adv. Funct. Mater. 2018, 28, 1705622.

39

Zhong, T.; He, B.; Cao, H. Q.; Tan, T.; Hu, H. Y.; Li, Y. P.; Zhang, Z. W. Treating breast cancer metastasis with cabazitaxel-loaded polymeric micelles. Acta Pharmacol. Sin. 2017, 38, 924–930.

40

Aydin, O.; Youssef, I.; Durmaz, Y. Y.; Tiruchinapally, G.; ElSayed, M. E. H. Formulation of acid-sensitive micelles for delivery of cabazitaxel into prostate cancer cells. Mol. Pharmaceutics 2016, 13, 1413–1429.

41

Sun, B. Y.; Chitgupi, U.; Li, C. N.; Federizon, J.; Zhang, C. J.; Ruszaj, D. M.; Razi, A.; Ortega, J.; Neelamegham, S.; Zhang, Y. M. et al. Surfactant-stripped cabazitaxel micelles stabilized by clotrimazole or mifepristone. Adv. Ther. 2020, 3, 1900161.

42

Sun, B. Y.; Jing, H.; Mabrouk, M. T.; Zhang, Y. M.; Jin, H. L.; Lovell, J. F. A surfactant-stripped cabazitaxel micelle formulation optimized with accelerated storage stability. Pharm. Dev. Technol. 2020, 25, 1281–1288.

43

Zhang, Y. M.; Song, W. T.; Geng, J. M.; Chitgupi, U.; Unsal, H.; Federizon, J.; Rzayev, J.; Sukumaran, D. K.; Alexandridis, P.; Lovell, J. F. Therapeutic surfactant-stripped frozen micelles. Nat. Commun. 2016, 7, 11649.

44

Barve, A.; Jain, A.; Liu, H.; Zhao, Z.; Cheng, K. Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta Biomater. 2020, 113, 501–511.

45

Chen, Y. G.; Deng, Y. Y.; Zhu, C. Y.; Xiang, C. M. Anti prostate cancer therapy: Aptamer-functionalized, curcumin, and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomed. Pharmacother. 2020, 127, 110181.

46

Fusser, M.; Øverbye, A.; Pandya, A. D.; Mørch, Ý.; Borgos, S. E.; Kildal, W.; Snipstad, S.; Sulheim, E.; Fleten, K. G.; Askautrud, H. A. Cabazitaxel-loaded Poly (2-ethylbutyl cyanoacrylate) nanoparticles improve treatment efficacy in a patient derived breast cancer xenograft. J. Controlled Release 2019, 293, 183–192.

47

Sulheim, E.; Mørch, Y.; Snipstad, S.; Borgos, S. E.; Miletic, H.; Bjerkvig, R.; De Lange Davies, C.; Åslund, A. K. O. Therapeutic effect of cabazitaxel and blood-brain barrier opening in a patient-derived glioblastoma model. Nanotheranostics 2019, 3, 103–112.

48

Xue, P.; Liu, D.; Wang, J.; Zhang, N.; Zhou, J. H.; Li, L.; Guo, W. L.; Sun, M. C.; Han, X. F.; Wang, Y. J. Redox-sensitive citronellol-cabazitaxel conjugate: Maintained in vitro cytotoxicity and self-assembled as multifunctional nanomedicine. Bioconjugate Chem. 2016, 27, 1360–1372.

49
Bensaid, F.; Du Boullay, O. T.; Amgoune, A.; Pradel, C.; Reddy, L. H.; Didier, E.; Sablé, S.; Louit, G.; Bazile, D.; Bourissou, D. Y-shaped mPEG-PLA cabazitaxel conjugates: Well-controlled synthesis by organocatalytic approach and self-assembly into interface drug-loaded core-corona nanoparticles. Biomacromolecules 2013, 14, 1189–1198.
50

Hoang, B.; Ernsting, M. J.; Tang, W. H. S.; Bteich, J.; Undzys, E.; Kiyota, T.; Li, S. D. Cabazitaxel-conjugated nanoparticles for docetaxel-resistant and bone metastatic prostate cancer. Cancer Lett. 2017, 410, 169–179.

51

Xie, B. B.; Wan, J. Q.; Chen, X. N.; Han, W. D.; Wang, H. X. Preclinical evaluation of a cabazitaxel prodrug using nanoparticle delivery for the treatment of taxane-resistant malignancies. Mol. Cancer Ther. 2020, 19, 822–834.

52

Wan, J. Q.; Qiao, Y. T.; Chen, X. N.; Wu, J. P.; Zhou, L. Q.; Zhang, J.; Fang, S. J.; Wang, H. X. Structure-guided engineering of cytotoxic cabazitaxel for an adaptive nanoparticle formulation: Enhancing the drug safety and therapeutic efficacy. Adv. Funct. Mater. 2018, 28, 1804229.

53

Sun, B. Y.; Straubinger, R. M.; Lovell, J. F. Current taxane formulations and emerging cabazitaxel delivery systems. Nano Res. 2018, 11, 5193–5218.

54

Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51.

55

Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H. L.; Kim, C. H.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W. G.; Wang, L. V.; Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011, 10, 324–332.

56

He, X. D.; Zhou, S. Q.; Huang, W. C.; Seffouh, A.; Mabrouk, M. T.; Morgan, M. T.; Ortega, J.; Abrams, S. I.; Lovell, J. F. A potent cancer vaccine adjuvant system for particleization of short, synthetic CD8+ T cell epitopes. ACS Nano 2021, 15, 4357–4371.

57

Moukheiber, D.; Chitgupi, U.; Carter, K. A.; Luo, D. D.; Sun, B. Y.; Goel, S.; Ferreira, C. A.; Engle, J. W.; Wang, D. P.; Geng, J. M. et al. Surfactant-stripped pheophytin micelles for multimodal tumor imaging and photodynamic therapy. ACS Appl. Bio Mater. 2019, 2, 544–554.

58

Luo, D. D.; Goel, S.; Liu, H. J.; Carter, K. A.; Jiang, D. W.; Geng, J. M.; Kutyreff, C. J.; Engle, J. W.; Huang, W. C.; Shao, S. et al. Intrabilayer 64Cu labeling of photoactivatable, doxorubicin-loaded stealth liposomes. ACS Nano 2017, 11, 12482–12491.

59

Kim, S.; Fujitsuka, M.; Majima, T. Photochemistry of singlet oxygen sensor green. J. Phys. Chem. B 2013, 117, 13985–13992.

60

Luo, D. D.; Carter, K. A.; Geng, J. M.; He, X. D.; Lovell, J. F. Short drug-light intervals improve liposomal chemophototherapy in mice bearing MIA PaCa-2 Xenografts. Mol. Pharmaceutics 2018, 15, 3682–3689.

61

Luo, D. D.; Carter, K. A.; Molins, E. A. G.; Straubinger, N. L.; Geng, J. M.; Shao, S.; Jusko, W. J.; Straubinger, R. M.; Lovell, J. F. Pharmacokinetics and pharmacodynamics of liposomal chemophototherapy with short drug-light intervals. J. Control. Release 2019, 297, 39–47.

Nano Research
Pages 4302-4309
Cite this article:
Sun B, Ghosh S, He X, et al. Anti-cancer liposomal chemophototherapy using bilayer-localized photosensitizer and cabazitaxel. Nano Research, 2022, 15(5): 4302-4309. https://doi.org/10.1007/s12274-022-4090-3
Topics:

1016

Views

13

Crossref

12

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 27 July 2021
Revised: 15 December 2021
Accepted: 19 December 2021
Published: 21 February 2022
© Tsinghua University Press 2022
Return