Journal Home > Volume 15 , Issue 5

The twist angle between two van der Waals coupled monolayers has emerged as a new and powerful degree of freedom for engineering physical properties of semiconductor homo- and hetero-bilayers. While the interlayer twist has shown prominent effect on electronic and optical properties of transition metal dichalcogenide (TMD) bilayers, it remains unclear how it could be used to manipulate the exciton dynamics, especially exciton-exciton annihilation (EEA) process which is the dominant energy loss channel in TMDs under moderate to high exciton density due to strong Coulomb interaction. Herein, we show that the twist angle in TMD bilayers can act as an effective knob to control the EEA process. Specifically, EEA rate constant increases from 1° twisted WSe2 bilayers (0.026 cm2/s) by more than twice to 32° twisted bilayers (0.053 cm2/s) and then drops again in 60° twisted bilayers (0.019 cm2/s). This twist-angle dependence can be attributed to the energy difference between indirect and direct excitons arising from the interlayer interaction. Our work opens up the possibility of artificially managing the exciton dynamics in TMD materials for optoelectronic applications via interlayer twist angle.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Controlling exciton-exciton annihilation in WSe2 bilayers via interlayer twist

Show Author's information Yuzhong Chen§Bichuan Cao§Cheng SunZedong WangHongzhi ZhouLinjun Wang( )Haiming Zhu( )
Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China

§ Yuzhong Chen and Bichuan Cao contributed equally to this work.

Abstract

The twist angle between two van der Waals coupled monolayers has emerged as a new and powerful degree of freedom for engineering physical properties of semiconductor homo- and hetero-bilayers. While the interlayer twist has shown prominent effect on electronic and optical properties of transition metal dichalcogenide (TMD) bilayers, it remains unclear how it could be used to manipulate the exciton dynamics, especially exciton-exciton annihilation (EEA) process which is the dominant energy loss channel in TMDs under moderate to high exciton density due to strong Coulomb interaction. Herein, we show that the twist angle in TMD bilayers can act as an effective knob to control the EEA process. Specifically, EEA rate constant increases from 1° twisted WSe2 bilayers (0.026 cm2/s) by more than twice to 32° twisted bilayers (0.053 cm2/s) and then drops again in 60° twisted bilayers (0.019 cm2/s). This twist-angle dependence can be attributed to the energy difference between indirect and direct excitons arising from the interlayer interaction. Our work opens up the possibility of artificially managing the exciton dynamics in TMD materials for optoelectronic applications via interlayer twist angle.

Keywords: transient absorption, interlayer coupling, twist angle, two-dimensional bilayer, exciton-exciton annihilation

References(63)

1

Liu, Y.; Huang, Y.; Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333.

2

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

3

Rivera, P.; Seyler, K. L.; Yu, H.; Schaibley, J. R.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 2016, 351, 688–691.

4

Yankowitz, M.; Chen, S. W.; Polshyn, H.; Zhang, Y. X.; Watanabe, K.; Taniguchi, T.; Graf, D.; Young, A. F.; Dean, C. R. Tuning superconductivity in twisted bilayer graphene. Science 2019, 363, 1059–1064.

5

Eisenstein, J. P.; Macdonald, A. H. Bose-einstein condensation of excitons in bilayer electron systems. Nature 2004, 432, 691–694.

6

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

7

Wu, F. C.; Lovorn, T.; MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 2017, 118, 147401.

8

Wu, F. C.; Lovorn, T.; MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2018, 97, 035036.

9

Kim, K.; DaSilva, A.; Huang, S. Q.; Fallahazad, B.; Larentis, S.; Taniguchi, T.; Watanabe, K.; LeRoy, B. J.; MacDonald, A. H.; Tutuc, E. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl. Acad. Sci. USA 2017, 114, 3364–3369.

10

Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

11

Naik, M. H.; Jain, M. Ultraflatbands and shear solitons in moire patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 2018, 121, 266401.

12

Morell, E. S.; Correa, J. D.; Vargas, P.; Pacheco, M.; Barticevic, Z. Flat bands in slightly twisted bilayer graphene: Tight-binding calculations. Phys. Rev. B 2010, 82, 121407(R).

13

Bistritzer, R.; MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA 2011, 108, 12233–12237.

14

Song, J. C. W.; Samutpraphoot, P.; Levitov, L. S. Topological bloch bands in graphene superlattices. Proc. Natl. Acad. Sci. USA 2015, 112, 10879–10883.

15

Carr, S.; Massatt, D.; Fang, S. A.; Cazeaux, P.; Luskin, M.; Kaxiras, E. Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 2017, 95, 075420.

16

Shi, J.; Li, Y. Z.; Zhang, Z. P.; Feng, W. Q.; Wang, Q.; Ren, S. L.; Zhang, J.; Du, W. N.; Wu, X. X.; Sui, X. Y. et al. Twisted-angle-dependent optical behaviors of intralayer excitons and trions in WS2/WSe2 heterostructure. ACS Photonics 2019, 6, 3082–3091.

17

Merkl, P.; Mooshammer, F.; Brem, S.; Girnghuber, A.; Lin, K. Q.; Weigl, L.; Liebich, M.; Yong, C. K.; Gillen, R.; Maultzsch, J. et al. Twist-tailoring coulomb correlations in van der Waals homobilayers. Nat. Commun. 2020, 11, 2167.

18

Liu, K. H.; Zhang, L. M.; Cao, T.; Jin, C. H.; Qiu, D. A.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

19

Yeh, P. C.; Jin, W. C.; Zaki, N.; Kunstmann, J.; Chenet, D.; Arefe, G.; Sadowski, J. T.; Dadap, J. I.; Sutter, P.; Hone, J. et al. Direct measurement of the tunable electronic structure of bilayer MoS2 by interlayer twist. Nano Lett. 2016, 16, 953–959.

20

Van Der Zande, A. M.; Kunstmann, J.; Chernikov, A.; Chenet, D. A.; You, Y. M.; Zhang, X. X.; Huang, P. Y.; Berkelbach, T. C.; Wang, L.; Zhang, F. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 2014, 14, 3869–3875.

21

Campos-Delgado, J.; Cançado, L. G.; Achete, C. A.; Jorio, A.; Raskin, J. P. Raman scattering study of the phonon dispersion in twisted bilayer graphene. Nano Res. 2013, 6, 269–274.

22

Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

23

Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of moire-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

24

Alexeev, E. M.; Ruiz-Tijerina, D. A.; Danovich, M.; Hamer, M. J.; Terry, D. J.; Nayak, P. K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J. I. et al. Resonantly hybridized excitons in moire superlattices in van der Waals heterostructures. Nature 2019, 567, 81–86.

25

Jin, C. H.; Regan, E. C.; Yan, A. M.; Iqbal Bakti Utama, M.; Wang, D. Q.; Zhao, S. H.; Qin, Y.; Yang, S. J.; Zheng, Z. R.; Shi, S. Y. et al. Observation of moire excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76–80.

26

Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M. et al. Hofstadter’s butterfly and the fractal quantum hall effect in moire superlattices. Nature 2013, 497, 598–602.

27

Tran, K.; Moody, G.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M.; Singh, A. et al. Evidence for moire excitons in van der Waals heterostructures. Nature 2019, 567, 71–75.

28

Regan, E. C.; Wang, D. Q.; Jin, C. H.; Iqbal Bakti Utama, M.; Gao, B. N.; Wei, X.; Zhao, S. H.; Zhao, W. Y.; Zhang, Z. C.; Yumigeta, K. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moire superlattices. Nature 2020, 579, 359–363.

29

Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 2012, 86, 115409.

30

Sharma, A.; Yan, H.; Zhang, L. L.; Sun, X. Q.; Liu, B. Q.; Lu, Y. R. Highly enhanced many-body interactions in anisotropic 2D semiconductors. Acc. Chem. Res. 2018, 51, 1164–1173.

31

Komsa, H. P.; Krasheninnikov, A. V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 2012, 86, 241201(R).

32

Chen, J.; Zhang, Q.; Shi, J.; Zhang, S.; Du, W. N.; Mi, Y.; Shang, Q. Y.; Liu, P. C.; Sui, X. Y.; Wu, X. X. et al. Room temperature continuous-wave excited biexciton emission in perovskite nanoplatelets via plasmonic nonlinear fano resonance. Commun. Phys. 2019, 2, 80.

33

Kumar, N.; Cui, Q. N.; Ceballos, F.; He, D. W.; Wang, Y. S.; Zhao, H. Exciton-exciton annihilation in MoSe2 monolayers. Phys. Rev. B 2014, 89, 125427.

34

Yuan, L.; Huang, L. B. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 2015, 7, 7402–7408.

35

Sun, D. Z.; Rao, Y.; Reider, G. A.; Chen, G. G.; You, Y. M.; Brézin, L.; Harutyunyan, A. R.; Heinz, T. F. Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 2014, 14, 5625–5629.

36

Mueller, T.; Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2018, 2, 29.

37

Kumar, N.; Najmaei, S.; Cui, Q. N.; Ceballos, F.; Ajayan, P. M.; Lou, J.; Zhao, H. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B 2013, 87, 161403(R).

38

Li, Y. L.; Rao, Y.; Mak, K. F.; You, Y. M.; Wang, S. Y.; Dean, C. R.; Heinz, T. F. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013, 13, 3329–3333.

39

Kim, C. J.; Brown, L.; Graham, M. W.; Hovden, R.; Havener, R. W.; McEuen, P. L.; Muller, D. A.; Park, J. Stacking order dependent second harmonic generation and topological defects in h-BN bilayers. Nano Lett. 2013, 13, 5660–5665.

40

Hsu, W. T.; Zhao, Z. A.; Li, L. J.; Chen, C. H.; Chiu, M. H.; Chang, P. S.; Chou, Y. C.; Chang, W. H. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 2014, 8, 2951–2958.

41

Zhao, W. J.; Ribeiro, R. M.; Toh, M.; Carvalho, A.; Kloc, C.; Neto, A. H. C.; Eda, G. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. Nano Lett. 2013, 13, 5627–5634.

42

Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797.

43

Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.

44

He, J. G.; Hummer, K.; Franchini, C. Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 2014, 89, 075409.

45

Wang, Z. L.; Chen, Q.; Wang, J. L. Electronic structure of twisted bilayers of graphene/MoS2 and MoS2/MoS2. J. Phys. Chem. C 2015, 119, 4752–4758.

46

Wang, G.; Marie, X.; Bouet, L.; Vidal, M.; Balocchi, A.; Amand, T.; Lagarde, D.; Urbaszek, B. Exciton dynamics in WSe2 bilayers. Appl. Phys. Lett. 2014, 105, 182105.

47

He, Z. Y.; Xu, W. S.; Zhou, Y. Q.; Wang, X. C.; Sheng, Y. W.; Rong, Y. M.; Guo, S. Q.; Zhang, J. Y.; Smith, J. M.; Warner, J. H. Biexciton formation in bilayer tungsten disulfide. ACS Nano 2016, 10, 2176–2183.

48

Courtade, E.; Semina, M.; Manca, M.; Glazov, M. M.; Robert, C.; Cadiz, F.; Wang, G.; Taniguchi, T.; Watanabe, K.; Pierre, M. et al. Charged excitons in monolayer WSe2: Experiment and theory. Phys. Rev. B 2017, 96, 085302.

49

Ceballos, F.; Cui, Q. N.; Bellus, M. Z.; Zhao, H. Exciton formation in monolayer transition metal dichalcogenides. Nanoscale 2016, 8, 11681–11688.

50

Steinleitner, P.; Merkl, P.; Nagler, P.; Mornhinweg, J.; Schüller, C.; Korn, T.; Chernikov, A.; Huber, R. Direct observation of ultrafast exciton formation in a monolayer of WSe2. Nano Lett. 2017, 17, 1455–1460.

51

Li, Z.; Zeng, Y.; Ou, Z. W.; Zhang, T. Z.; Du, R. G.; Wu, K.; Guo, Q. B.; Jiang, W.; Xu, Y. H.; Li, T. et al. Defects inducing anomalous exciton kinetics in monolayer WS2. Nano Res. 2022, 15, 1616–1622.

52

Schmidt, R.; Berghäuser, G.; Schneider, R.; Selig, M.; Tonndorf, P.; Malić, E.; Knorr, A.; De Vasconcellos, S. M.; Bratschitsch, R. Ultrafast coulomb-induced intervalley coupling in atomically thin WS2. Nano Lett. 2016, 16, 2945–2950.

53

Zhao, J. X.; Zhao, W. J.; Du, W.; Su, R.; Xiong, Q. H. Dynamics of exciton energy renormalization in monolayer transition metal disulfides. Nano Res. 2020, 13, 1399–1405.

54

Surrente, A.; Mitioglu, A. A.; Galkowski, K.; Klopotowski, L.; Tabis, W.; Vignolle, B.; Maude, D. K.; Plochocka, P. Onset of exciton-exciton annihilation in single-layer black phosphorus. Phys. Rev. B 2016, 94, 075425.

55

Li, Z. P.; Wang, T. M.; Lu, Z. G.; Jin, C. H.; Chen, Y. W.; Meng, Y. Z.; Lian, Z.; Taniguchi, T.; Watanabe, K.; Zhang, S. B. et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2. Nat. Commun. 2018, 9, 3719.

56

Sim, S.; Lee, D.; Lee, J.; Cha, M.; Cha, S.; Heo, W.; Cho, S.; Shim, W.; Lee, K.; Yoo, J. et al. Role of weak interlayer coupling in ultrafast exciton-exciton annihilation in two-dimensional rhenium dichalcogenides. Phys. Rev. B 2020, 101, 174309.

57

Mak, K. F.; Lee, C. G.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

58

Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.

59

Robel, I.; Gresback, R.; Kortshagen, U.; Schaller, R. D.; Klimov, V. I. Universal size-dependent trend in auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. Phys. Rev. Lett. 2009, 102, 177404.

60

Haug, A. Band-to-band auger recombination in semiconductors. J. Phys. Chem. Solids 1988, 49, 599–605.

61

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.

62

Schutte, W. J.; De Boer, J. L.; Jellinek, F. Crystal structures of tungsten disulfide and diselenide. J. Solid State Chem. 1987, 70, 207–209.

63

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

File
12274_2022_4087_MOESM1_ESM.pdf (537.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 October 2021
Revised: 28 November 2021
Accepted: 29 December 2021
Published: 24 February 2022
Issue date: May 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We thank the financial support from the National Natural Science Foundation of China (Nos. 22022305, 21773208, 21922305, and 21873080), the Fundamental Research Funds for the Central Universities (No. 2020XZZX002-06), and National Key Research and Development Program of China (No. 2017YFA0207700).

Return