Journal Home > Volume 15 , Issue 5

Photodynamic therapy (PDT) has shown a promising capability for cancer treatment with minimal side effects. Indocyanine green (ICG), the only clinically approved near-infrared (NIR) fluorophore, has been used as a photosensitizer for PDT in clinical application. However, the main obstacle of directly utilizing ICG in the clinic lies in its low singlet oxygen (1O2) quantum yield (QY) and instability in aqueous solution. To improve the PDT efficacy of ICG, free ICG molecules were assembled with free oxygen nanobubbles (NBs-O2) to fabricate ICG-NBs-O2 by hydrophilic–hydrophobe interactions on the gas–liquid interface. Interestingly, 1O2 QY of ICG-NBs-O2 solution was significantly increased to 1.6%, which was estimated to be 8 times as high as that of free ICG solution. Meanwhile, ICG-NBs-O2 exhibited better aqueous solution stability compared with free ICG. Furthermore, through establishing tumor models in nude mice, the therapeutic efficacy of ICG-NBs-O2 was also assessed in the PDT treatment of oral cancer. The tumor volume in ICG-NBs-O2 treated group on day 14 decreased to 0.56 of the initial tumor size on day 1, while the tumor volume in free ICG treated group increased to 2.4 times. The results demonstrated that ICG-NBs-O2 showed excellent tumor ablation in vivo. Therefore, this facile method provided an effective strategy for enhanced PDT treatment of ICG and showed great potential in clinical application.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Indocyanine green assembled free oxygen-nanobubbles towards enhanced near-infrared induced photodynamic therapy

Show Author's information Li Yang1Bin Huang1,2( )Shiqi Hu3Yuan An1Jingyi Sheng1Yan Li1Yuxin Wang3Ning Gu1( )
State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
College of Life Sciences and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
Nanjing Stomatology Hospital, Nanjing 210008, China

Abstract

Photodynamic therapy (PDT) has shown a promising capability for cancer treatment with minimal side effects. Indocyanine green (ICG), the only clinically approved near-infrared (NIR) fluorophore, has been used as a photosensitizer for PDT in clinical application. However, the main obstacle of directly utilizing ICG in the clinic lies in its low singlet oxygen (1O2) quantum yield (QY) and instability in aqueous solution. To improve the PDT efficacy of ICG, free ICG molecules were assembled with free oxygen nanobubbles (NBs-O2) to fabricate ICG-NBs-O2 by hydrophilic–hydrophobe interactions on the gas–liquid interface. Interestingly, 1O2 QY of ICG-NBs-O2 solution was significantly increased to 1.6%, which was estimated to be 8 times as high as that of free ICG solution. Meanwhile, ICG-NBs-O2 exhibited better aqueous solution stability compared with free ICG. Furthermore, through establishing tumor models in nude mice, the therapeutic efficacy of ICG-NBs-O2 was also assessed in the PDT treatment of oral cancer. The tumor volume in ICG-NBs-O2 treated group on day 14 decreased to 0.56 of the initial tumor size on day 1, while the tumor volume in free ICG treated group increased to 2.4 times. The results demonstrated that ICG-NBs-O2 showed excellent tumor ablation in vivo. Therefore, this facile method provided an effective strategy for enhanced PDT treatment of ICG and showed great potential in clinical application.

Keywords: photodynamic therapy, free oxygen-nanobubbles, aqueous solution stability, singlet oxygen quantum yield, indocyanine green

References(40)

1

Shibu, E. S.; Hamada, M.; Murase, N.; Biju, V. Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J. Photochem. Photobiol. C Photochem. Rev. 2013, 15, 53–72.

2

Liu, J. J.; Liu, K.; Feng, L. Z.; Liu, Z.; Xu, L. G. Comparison of nanomedicine-based chemotherapy, photodynamic therapy and photothermal therapy using reduced graphene oxide for the model system. Biomater. Sci. 2017, 5, 331–340.

3

Hak, A.; Shinde, V. R.; Rengan, A. K. A review of advanced nanoformulations in phototherapy for cancer therapeutics. Photodiagnosis Photodyn. Ther. 2021, 33, 102205.

4

Yan, J. X.; Wang, C. L.; Jiang, X. M.; Wei, Y. Q.; Wang, Q.; Cui, K. L.; Xu, X.; Wang, F.; Zhang, L. Application of phototherapeutic-based nanoparticles in colorectal cancer. Int. J. Biol. Sci. 2021, 17, 1361–1381.

5

Fan, H. Y.; Zhu, Z. L.; Zhang, W. L.; Yin, Y. J.; Tang, Y. L.; Liang, X. H.; Zhang, L. Light stimulus responsive nanomedicine in the treatment of oral squamous cell carcinoma. Eur. J. Med. Chem. 2020, 199, 112394.

6

Zou, L. L.; Wang, H.; He, B.; Zeng, L. J.; Tan, T.; Cao, H. Q.; He, X. Y.; Zhang, Z. W.; Guo, S. R.; Li, Y. P. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 2016, 6, 762–772.

7

Martins, W. K.; Belotto, R.; Silva, M. N.; Grasso, D.; Suriani, M. D.; Lavor, T. S.; Itri, R.; Baptista, M. S.; Tsubone, T. M. Autophagy regulation and photodynamic therapy: Insights to improve outcomes of cancer treatment. Front. Oncol. 2021, 10, 610472.

8

Ethirajan, M.; Chen, Y. H.; Joshi, P.; Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 2011, 40, 340–362.

9

Dias, L. D.; Bagnato, V. S. An update on clinical photodynamic therapy for fighting respiratory tract infections: A promising tool against COVID-19 and its co-infections. Laser Phys. Lett. 2020, 17, 083001.

10

Stájer, A.; Kajári, S.; Gajdács, M.; Musah-Eroje, A.; Baráth, Z. Utility of photodynamic therapy in dentistry: Current concepts. Dent. J. 2020, 8, 43.

11

Kwon, N.; Kim, H.; Li, X. S.; Yoon, J. Supramolecular agents for combination of photodynamic therapy and other treatments. Chem. Sci. 2021, 12, 7248–7268.

12

Hong, E. J.; Choi, D. G.; Shim, M. S. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm. Sin. B 2016, 6, 297–307.

13

Chilakamarthi, U.; Giribabu, L. Photodynamic therapy: Past, present and future. Chem. Rec. 2017, 17, 775–802.

14

Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

15

Kawczyk-Krupka, A.; Bugaj, A. M.; Latos, W.; Zaremba, K.; Wawrzyniec, K.; Kucharzewski, M.; Sieroń, A. Photodynamic therapy in colorectal cancer treatment—The state of the art in preclinical research. Photodiagnosis Photodyn. Ther. 2016, 13, 158–174.

16

Mu, C. N.; Wang, W.; Wang, J.; Gong, C.; Zhang, D. M.; Zhang, X. X. Probe-free direct identification of type I and type II photosensitized oxidation using field-induced droplet ionization mass spectrometry. Angew. Chem.,Int. Ed. 2020, 59, 21515–21519.

17

Estébanez, S.; Lorente, C.; Kaufman, T. S.; Larghi, E. L.; Thomas, A. H.; Serrano, M. P. Photophysical and photochemical properties of 3-methylpterin as a new and more stable pterin-type photosensitizer. Photochem. Photobiol. 2018, 94, 881–889.

18

Baptista, M. S.; Cadet, J.; Di Mascio, P.; Ghogare, A. A.; Greer, A.; Hamblin, M. R.; Lorente, C.; Nunez, S. C.; Ribeiro, M. S.; Thomas, A. H. et al. Type I and type II photosensitized oxidation reactions: Guidelines and mechanistic pathways. Photochem. Photobiol. 2017, 93, 912–919.

19

Figueiró Longo, J. P.; Lozzi, S. P.; Simioni, A. R.; Morais, P. C.; Tedesco, A. C.; Azevedo, R. B. Photodynamic therapy with aluminum-chloro-phtalocyanine induces necrosis and vascular damage in mice tongue tumors. J. Photochem. Photobiol. B Biol. 2009, 94, 143–146.

20

Jayme, C. C.; Calori, I. R.; Freire Cunha, E. M.; Tedesco, A. C. Evaluation of aluminum phthalocyanine chloride and DNA interactions for the design of an advanced drug delivery system in photodynamic therapy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 201, 242–248.

21

Bicalho, L. S.; Longo, J. P. F.; Cavalcanti, C. E.; Simioni, A. R.; Bocca, A. L.; de Almeida Santos, M. D. F. M.; Tedesco, A. C.; Azevedo, R. B. Photodynamic therapy leads to complete remission of tongue tumors and inhibits metastases to regional lymph nodes. J. Biomed. Nanotechnol. 2013, 9, 811–818.

22

Yang, S. J.; Lin, C. F.; Kuo, M. L.; Tan, C. T. Photodynamic detection of oral cancers with high-performance chitosan-based nanoparticles. Biomacromolecules 2013, 14, 3183–3191.

23

Wang, X. H.; Yu, Y. X.; Cheng, K.; Yang, W.; Liu, Y. A.; Peng, H. S. Polylysine modified conjugated polymer nanoparticles loaded with the singlet oxygen probe 1,3-diphenylisobenzofuran and the photosensitizer indocyanine green for use in fluorometric sensing and in photodynamic therapy. Microchim. Acta 2019, 186, 842.

24

Shi, L. L.; Hu, F.; Duan, Y. K.; Wu, W. B.; Dong, J. Q.; Meng, X. J.; Zhu, X. Y.; Liu, B. Hybrid nanospheres to overcome hypoxia and intrinsic oxidative resistance for enhanced photodynamic therapy. ACS Nano 2020, 14, 2183–2190.

25

Wan, Y. P.; Lu, G. H.; Zhang, J. F.; Wang, Z. Y.; Li, X. Z.; Chen, R.; Cui, X.; Huang, Z. M.; Xiao, Y. F.; Chelora, J. et al. A biocompatible free radical nanogenerator with real-time monitoring capability for high performance sequential hypoxic tumor therapy. Adv. Funct. Mater. 2019, 29, 1903436.

26

Hu, J. J.; Lei, Q.; Zhang, X. Z. Recent advances in photonanomedicines for enhanced cancer photodynamic therapy. Prog. Mater. Sci. 2020, 114, 100685.

27

Khan, S.; Sharifi, M.; Hasan, A.; Attar, F.; Edis, Z.; Bai, Q.; Derakhshankhah, H.; Falahati, M. Magnetic nanocatalysts as multifunctional platforms in cancer therapy through the synthesis of anticancer drugs and facilitated Fenton reaction. J. Adv. Res. 2021, 30, 171–184.

28

Treger, J. S.; Priest, M. F.; Iezzi, R.; Bezanilla, F. Real-time imaging of electrical signals with an infrared FDA-approved dye. Biophys. J. 2014, 107, L09–L12.

29

Sheng, Z. H.; Hu, D. H.; Xue, M. M.; He, M.; Gong, P.; Cai, L. T. Indocyanine green nanoparticles for theranostic applications. Nano-Micro Lett. 2013, 5, 145–150.

30

Zhang, R. R.; Schroeder, A. B.; Grudzinski, J. J.; Rosenthal, E. L.; Warram, J. M.; Pinchuk, A. N.; Eliceiri, K. W.; Kuo, J. S.; Weichert, J. P. Beyond the margins: Real-time detection of cancer using targeted fluorophores. Nat. Rev. Clin. Oncol. 2017, 14, 347–364.

31

Vahrmeijer, A. L.; Hutteman, M.; van der Vorst, J. R.; van de Velde, C. J. H.; Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 2013, 10, 507–518.

32

Guan, S. Y.; Weng, Y. Z. W.; Li, M. N.; Liang, R. Z.; Sun, C. H.; Qu, X. Z.; Zhou, S. Y. An NIR-sensitive layered supramolecular nanovehicle for combined dual-modal imaging and synergistic therapy. Nanoscale 2017, 9, 10367–10374.

33

Wu, L.; Fang, S. T.; Shi, S.; Deng, J. Z.; Liu, B.; Cai, L. T. Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study. Biomacromolecules 2013, 14, 3027–3033.

34

Lee, C. H.; Cheng, S. H.; Wang, Y. J.; Chen, Y. C.; Chen, N. T.; Souris, J.; Chen, C. T.; Mou, C. Y.; Yang, C. S.; Lo, L. W. Near-infrared mesoporous silica nanoparticles for optical imaging: Characterization and in vivo biodistribution. Adv. Funct. Mater. 2009, 19, 215–222.

35

Patel, R. H.; Wadajkar, A. S.; Patel, N. L.; Kavuri, V. C.; Nguyen, K. T.; Liu, H. L. Multifunctionality of indocyanine green-loaded biodegradable nanoparticles for enhanced optical imaging and hyperthermia intervention of cancer. J. Biomed. Opt. 2012, 17, 046003.

36

Yang, L.; Huang, B.; Chen, F.; Jin, J.; Qin, Z. G.; Yang, F.; Li, Y.; Gu, N. Indocyanine green assembled nanobubbles with enhanced fluorescence and photostability. Langmuir 2020, 36, 12983–12989.

37

Jin, J.; Feng, Z. Q.; Yang, F.; Gu, N. Bulk nanobubbles fabricated by repeated compression of microbubbles. Langmuir 2019, 35, 4238–4245.

38

Zhang, J. F.; Fang, F.; Liu, B.; Tan, J. H.; Chen, W. C.; Zhu, Z. L.; Yuan, Y.; Wan, Y. P.; Cui, X.; Li, S. L. et al. Intrinsically cancer-mitochondria-targeted thermally activated delayed fluorescence nanoparticles for two-photon-activated fluorescence imaging and photodynamic therapy. ACS Appl. Mater. Interfaces 2019, 11, 41051–41061.

39

Wang, S. H.; Shang, L.; Li, L. L.; Yu, Y. J.; Chi, C. W.; Wang, K.; Zhang, J.; Shi, R.; Shen, H. Y.; Waterhouse, G. I. N. et al. Metal-organic-framework-derived mesoporous carbon nanospheres containing porphyrin-like metal centers for conformal phototherapy. Adv. Mater. 2016, 28, 8379–8387.

40

Yasui, K.; Tuziuti, T.; Kanematsu, W. Mysteries of bulk nanobubbles (ultrafine bubbles); stability and radical formation. Ultrason. Sonochem. 2018, 48, 259–266.

File
12274_2022_4085_MOESM1_ESM.pdf (404.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 October 2021
Revised: 15 December 2021
Accepted: 19 December 2021
Published: 29 January 2022
Issue date: May 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This investigation was financially funded by the projects of the National Key Research and Development Program of China (No. 2017YFA0104302), the National Natural Science Foundation of China (Nos. 51832001, 61821002, and 81971750), and the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 2021K601C).

Return