Journal Home > Volume 15 , Issue 5

The cathode of lithium-oxygen (Li-O2) batteries should have large space for high Li2O2 uptake and superior electrocatalytic activity to oxygen evolution/reduction for long lifespan. Herein, a high-performance MnOx/hCNC cathode was constructed by the defect-induced deposition of manganese oxide (MnOx) nanoparticles on hierarchical carbon nanocages (hCNC). The corresponding Li-O2 battery (MnOx/hCNC@Li-O2) exhibited excellent electrocatalytic activity with the low overpotential of 0.73‒0.99 V in the current density range of 0.1‒1.0 A·g–1. The full discharge capacity and cycling life of MnOx/hCNC@Li-O2 were increased by ~86.7% and ~91%, respectively, compared with the hCNC@Li-O2 counterpart. The superior performance of MnOx/hCNC cathode was ascribed to (i) the highly dispersed MnOx nanoparticles for boosting the reversibility of oxygen evolution/reduction reactions, (ii) the interconnecting pore structure for increasing Li2O2 accommodation and facilitating charge/mass transfer, and (iii) the concealed surface defects of hCNC for suppressing side reactions. This study demonstrated an effective strategy to improve the performance of Li-O2 batteries by constructing cathodes with highly dispersed catalytic sites and hierarchical porous structure.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Defect-induced deposition of manganese oxides on hierarchical carbon nanocages for high-performance lithium-oxygen batteries

Show Author's information Baoxing WangChenxia LiuLijun YangQiang Wu( )Xizhang Wang( )Zheng Hu( )
Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

Abstract

The cathode of lithium-oxygen (Li-O2) batteries should have large space for high Li2O2 uptake and superior electrocatalytic activity to oxygen evolution/reduction for long lifespan. Herein, a high-performance MnOx/hCNC cathode was constructed by the defect-induced deposition of manganese oxide (MnOx) nanoparticles on hierarchical carbon nanocages (hCNC). The corresponding Li-O2 battery (MnOx/hCNC@Li-O2) exhibited excellent electrocatalytic activity with the low overpotential of 0.73‒0.99 V in the current density range of 0.1‒1.0 A·g–1. The full discharge capacity and cycling life of MnOx/hCNC@Li-O2 were increased by ~86.7% and ~91%, respectively, compared with the hCNC@Li-O2 counterpart. The superior performance of MnOx/hCNC cathode was ascribed to (i) the highly dispersed MnOx nanoparticles for boosting the reversibility of oxygen evolution/reduction reactions, (ii) the interconnecting pore structure for increasing Li2O2 accommodation and facilitating charge/mass transfer, and (iii) the concealed surface defects of hCNC for suppressing side reactions. This study demonstrated an effective strategy to improve the performance of Li-O2 batteries by constructing cathodes with highly dispersed catalytic sites and hierarchical porous structure.

Keywords: electrocatalysis, manganese oxide, hierarchical carbon nanocages, Li-O2 batteries , defect-induced deposition

References(46)

1

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

2

Chen, K.; Yang, D. Y.; Huang, G.; Zhang, X. B. Lithium-air batteries: Air-electrochemistry and anode stabilization. Acc. Chem. Res. 2021, 54, 632–641.

3

Wang, B. X.; Wang, X.; Cheng, X. Y.; Zhang, J.; Yan, M. L.; Li, G. C.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Nonmacrocyclic iron(II) soluble redox mediators leading to high-rate Li-O2 battery. CCS Chem. 2020, 3, 1350–1358.

4

Shen, Z. Z.; Lang, S. Y.; Shi, Y.; Ma, J. M.; Wen, R.; Wan, L. J. Revealing the surface effect of the soluble catalyst on oxygen reduction/evolution in Li-O2 batteries. J. Am. Chem. Soc. 2019, 141, 6900–6905.

5

Dou, Y. Y.; Lian, R. Q.; Zhang, Y. T.; Zhao, Y. Y.; Chen, G.; Wei, Y. J.; Peng, Z. Q. Co9S8@carbon porous nanocages derived from a metal-organic framework: A highly efficient bifunctional catalyst for aprotic Li-O2 batteries. J. Mater. Chem. A. 2018, 6, 8595–8603.

6

Lu, Y. C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y. Lithium-oxygen batteries: Bridging mechanistic understanding and battery performance. Energy Environ. Sci. 2013, 6, 750–768.

7

Chao, F. F.; Wang, B. X.; Ren, J. J.; Lu, Y. W.; Zhang, W. R.; Wang, X. Z.; Cheng, L.; Lou, Y. B.; Chen, J. X. Micro-meso-macroporous FeCo-N-C derived from hierarchical bimetallic FeCo-ZIFs as cathode catalysts for enhanced Li-O2 batteries performance. J. Energy Chem. 2019, 35, 212–219.

8

Fu, J. M.; Guo, X. X.; Huo, H. Y.; Chen, Y.; Zhang, T. Easily decomposed discharge products induced by cathode construction for highly energy-efficient lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2019, 11, 14803–14809.

9

Wang, L. J.; Lyu, Z.; Gong, L. L.; Zhang, J.; Wu, Q.; Wang, X. Z.; Huo, F. W.; Huang, W.; Hu, Z.; Chen, W. Ruthenium-functionalized hierarchical carbon nanocages as efficient catalysts for Li-O2 batteries. ChemNanoMat 2017, 3, 415–419.

10

Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Bruce, P. G. The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 2013, 135, 494–500.

11

Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater. 2020, 32, 1904177.

12

Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 2017, 50, 435–444.

13

Luo, W. B.; Pham, T. V.; Guo, H. P.; Liu, H. K.; Dou, S. X. Three-dimensional array of TiN@Pt3Cu nanowires as an efficient porous electrode for the lithium-oxygen battery. ACS Nano 2017, 11, 1747–1754.

14

Lu, X. Y.; Zhang, L.; Sun, X. L.; Si, W. P.; Yan, C. L.; Schmidt, O. G. Bifunctional Au-Pd decorated MnOx nanomembranes as cathode materials for Li-O2 batteries. J. Mater. Chem. A 2016, 4, 4155–4160.

15

Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.

16

Jiang, Z. L.; Sun, H.; Shi, W. K.; Zhou, T. H.; Hu, J. Y.; Cheng, J. Y.; Hu, P. F.; Sun, S. G. Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery. Nano Res. 2019, 12, 1555–1562.

17

Cao, X. C.; Zheng, X. J.; Sun, Z. H.; Jin, C.; Tian, J. H.; Sun, S. R.; Yang, R. Z. Oxygen defect-ridden molybdenum oxide-coated carbon catalysts for Li-O2 battery cathodes. Appl. Catal. B:Environ. 2019, 253, 317–322.

18

Ma, Z. P.; Shao, G. J.; Fan, Y. Q.; Wang, G. L.; Song, J. J.; Shen, D. J. Construction of hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core-shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl. Mater. Interfaces 2016, 8, 9050–9058.

19

Zhang, J.; Luan, Y. P.; Lyu, Z.; Wang, L. J.; Xu, L. L.; Yuan, K. D.; Pan, F.; Lai, M.; Liu, Z. L.; Chen, W. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries. Nanoscale 2015, 7, 14881–14888.

20

Zheng, Y.; Gao, R.; Zheng, L. R.; Sun, L. M.; Hu, Z. B.; Liu, X. F. Ultrathin Co3O4 nanosheets with edge-enriched {111} planes as efficient catalysts for lithium-oxygen batteries. ACS Catal. 2019, 9, 3773–3782.

21

Lee, Y. J.; Kim, D. H.; Kang, T. G.; Ko, Y.; Kang, K.; Lee, Y. J. Bifunctional MnO2-coated Co3O4 hetero-structured catalysts for reversible Li-O2 batteries. Chem. Mater. 2017, 29, 10542–10550.

22

Xing, Y.; Yang, Y.; Chen, R. J.; Luo, M. C.; Chen, N.; Ye, Y. S.; Qian, J.; Li, L.; Wu, F.; Guo, S. J. Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high-performance aprotic Li-O2 battery. Small 2018, 14, 1704366.

23

Qiu, F. L.; He, P.; Jiang, J.; Zhang, X. P.; Tong, S. F.; Zhou, H. S. Ordered mesoporous TiC-C composites as cathode materials for Li-O2 batteries. Chem. Commun. 2016, 52, 2713–2716.

24

Hou, Y. Y.; Wang, J. Z.; Liu, L. L.; Liu, Y. Q.; Chou, S. L.; Shi, D. Q.; Liu, H. K.; Wu, Y. P.; Zhang, W. M.; Chen, J. Mo2C/CNT: An efficient catalyst for rechargeable Li-CO2 batteries. Adv. Funct. Mater. 2017, 27, 1700564.

25

Yang, C.; Guo, K. K.; Yuan, D. W.; Cheng, J. L.; Wang, B. Unraveling reaction mechanisms of Mo2C as cathode catalyst in a Li-CO2 battery. J. Am. Chem. Soc. 2020, 142, 6983–6990.

26

Luo, Y.; Jin, C.; Wang, Z. J.; Wei, M. H.; Yang, C. H.; Yang, R. Z.; Chen, Y.; Liu, M. L. A high-performance oxygen electrode for Li-O2 batteries: Mo2C nanoparticles grown on carbon fibers. J. Mater. Chem. A 2017, 5, 5690–5695.

27

Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Chen, Y. H.; Liu, Z.; Bruce, P. G. A stable cathode for the aprotic Li-O2 battery. Nat. Mater. 2013, 12, 1050–1056.

28

Sun, W. W.; Liu, C.; Li, Y. J.; Luo, S. Q.; Liu, S. K.; Hong, X. B.; Xie, K.; Liu, Y. M.; Tan, X. J.; Zheng, C. Rational construction of Fe2N@C yolk-shell nanoboxes as multifunctional hosts for ultralong lithium-sulfur batteries. ACS Nano 2019, 13, 12137–12147.

29

Li, G. R.; Song, J.; Pan, G. L.; Gao, X. P. Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 1680–1683.

30

Liu, J. M.; Wang, C. B.; Sun, H. M.; Wang, H.; Rong, F. L.; He, L. H.; Lou, Y. F.; Zhang, S.; Zhang, Z. H.; Du, M. CoOx/CoNy nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn-air battery. Appl. Catal. B:Environ. 2020, 279, 119407.

31

Hosseini-Benhangi, P. H.; Kung, C. H.; Alfantazi, A.; Gyenge, E. L. Controlling the interfacial environment in the electrosynthesis of MnOx nanostructures for high-performance oxygen reduction/evolution electrocatalysis. ACS Appl. Mater. Interfaces 2017, 9, 26771–26785.

32

Dai, L. N.; Sun, Q.; Chen, L. N.; Guo, H. H.; Nie, X. K.; Cheng, J.; Guo, J. G.; Li, J. W.; Lou, J.; Ci, L. J. Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries. Nano Res. 2020, 13, 2356–2364.

33

Zhang, P.; Sun, D. F.; He, M.; Lang, J. W.; Xu, S.; Yan, X. B. Synthesis of porous δ-MnO2 submicron tubes as highly efficient electrocatalyst for rechargeable Li-O2 batteries. ChemSusChem 2015, 8, 1972–1979.

34

Wang, J. J.; Dong, L. B.; Xu, C. J.; Ren, D. Y.; Ma, X. P.; Kang, F. Y. Polymorphous supercapacitors constructed from flexible three-dimensional carbon network/polyaniline/MnO2 composite textiles. ACS Appl. Mater. Interfaces 2018, 10, 10851–10859.

35

Qin, Y.; Lu, J.; Du, P.; Chen, Z. H.; Ren, Y.; Wu, T. P.; Miller, J. T.; Wen, J. G.; Miller, D. J.; Zhang, Z. C. et al. In situ fabrication of porous-carbon-supported α-MnO2 nanorods at room temperature: Application for rechargeable Li-O2 batteries. Energy Environ. Sci. 2013, 6, 519–531.

36

Ma, Z. P.; Jing, F. Y.; Fan, Y. Q.; Hou, L. Y.; Su, L.; Fan, L. K.; Shao, G. J. High-stability MnOx nanowires@C@MnOx nanosheet core-shell heterostructure pseudocapacitance electrode based on reversible phase transition mechanism. Small 2019, 15, 1900862.

37

Peng, X.; Guo, Y. Q.; Yin, Q.; Wu, J. C.; Zhao, J. Y.; Wang, C. M.; Tao, S.; Chu, W. S.; Wu, C. Z.; Xie, Y. Double-exchange effect in two-dimensional MnO2 nanomaterials. J. Am. Chem. Soc. 2017, 139, 5242–5248.

38

Xie, K.; Qin, X. T.; Wang, X. Z.; Wang, Y. N.; Tao, H. S.; Wu, Q.; Yang, L. J.; Hu, Z. Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 2012, 24, 347–352.

39

Lyu, Z.; Xu, D.; Yang, L. J.; Che, R. C.; Feng, R.; Zhao, J.; Li, Y.; Wu, Q.; Wang, X. Z.; Hu, Z. Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium-sulfur batteries. Nano Energy 2015, 12, 657–665.

40

Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 2015, 5, 6707–6712.

41

Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

42
Website.https://xpssimplified.com/elements/manganese.php.
43

Sodtipinta, J.; Pon-On, W.; Veerasai, W.; Smith, S. M.; Pakawatpanurut, P. Chelating agent- and surfactant-assisted synthesis of manganese oxide/carbon nanotube composite for electrochemical capacitors. Mater. Res. Bull. 2013, 48, 1204–1212.

44

Yang, S. X.; He, P.; Zhou, H. S. Research progresses on materials and electrode design towards key challenges of Li-air batteries. Energy Storage Mater. 2018, 13, 29–48.

45

Shang, C. Q.; Dong, S. M.; Hu, P.; Guan, J.; Xiao, D. D.; Chen, X.; Zhang, L. X.; Gu, L.; Cui, G. L.; Chen, L. Q. Compatible interface design of CoO-based Li-O2 battery cathodes with long-cycling stability. Sci. Rep. 2015, 5, 8335.

46

Zhang, P.; Wang, R. T.; He, M.; Lang, J. W.; Xu, S.; Yan, X. B. 3D hierarchical Co/CoO-graphene-carbonized melamine foam as a superior cathode toward long-life lithium oxygen batteries. Adv. Funct. Mater. 2016, 26, 1354–1364.

File
12274_2022_4079_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 October 2021
Revised: 10 December 2021
Accepted: 19 December 2021
Published: 28 February 2022
Issue date: May 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was jointly financed by the National Key Research and Development Program of China (Nos. 2018YFA0209100 and 2017YFA0206500), the National Natural Science Foundation of China (NSFC) (Nos. 21832003, 21972061, and 21773111) and the Fundamental Research Funds for the Central Universities (No. 020514380237).

Return