Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The cathode of lithium-oxygen (Li-O2) batteries should have large space for high Li2O2 uptake and superior electrocatalytic activity to oxygen evolution/reduction for long lifespan. Herein, a high-performance MnOx/hCNC cathode was constructed by the defect-induced deposition of manganese oxide (MnOx) nanoparticles on hierarchical carbon nanocages (hCNC). The corresponding Li-O2 battery (MnOx/hCNC@Li-O2) exhibited excellent electrocatalytic activity with the low overpotential of 0.73‒0.99 V in the current density range of 0.1‒1.0 A·g–1. The full discharge capacity and cycling life of MnOx/hCNC@Li-O2 were increased by ~86.7% and ~91%, respectively, compared with the hCNC@Li-O2 counterpart. The superior performance of MnOx/hCNC cathode was ascribed to (i) the highly dispersed MnOx nanoparticles for boosting the reversibility of oxygen evolution/reduction reactions, (ii) the interconnecting pore structure for increasing Li2O2 accommodation and facilitating charge/mass transfer, and (iii) the concealed surface defects of hCNC for suppressing side reactions. This study demonstrated an effective strategy to improve the performance of Li-O2 batteries by constructing cathodes with highly dispersed catalytic sites and hierarchical porous structure.
Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.
Chen, K.; Yang, D. Y.; Huang, G.; Zhang, X. B. Lithium-air batteries: Air-electrochemistry and anode stabilization. Acc. Chem. Res. 2021, 54, 632–641.
Wang, B. X.; Wang, X.; Cheng, X. Y.; Zhang, J.; Yan, M. L.; Li, G. C.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Nonmacrocyclic iron(II) soluble redox mediators leading to high-rate Li-O2 battery. CCS Chem. 2020, 3, 1350–1358.
Shen, Z. Z.; Lang, S. Y.; Shi, Y.; Ma, J. M.; Wen, R.; Wan, L. J. Revealing the surface effect of the soluble catalyst on oxygen reduction/evolution in Li-O2 batteries. J. Am. Chem. Soc. 2019, 141, 6900–6905.
Dou, Y. Y.; Lian, R. Q.; Zhang, Y. T.; Zhao, Y. Y.; Chen, G.; Wei, Y. J.; Peng, Z. Q. Co9S8@carbon porous nanocages derived from a metal-organic framework: A highly efficient bifunctional catalyst for aprotic Li-O2 batteries. J. Mater. Chem. A. 2018, 6, 8595–8603.
Lu, Y. C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y. Lithium-oxygen batteries: Bridging mechanistic understanding and battery performance. Energy Environ. Sci. 2013, 6, 750–768.
Chao, F. F.; Wang, B. X.; Ren, J. J.; Lu, Y. W.; Zhang, W. R.; Wang, X. Z.; Cheng, L.; Lou, Y. B.; Chen, J. X. Micro-meso-macroporous FeCo-N-C derived from hierarchical bimetallic FeCo-ZIFs as cathode catalysts for enhanced Li-O2 batteries performance. J. Energy Chem. 2019, 35, 212–219.
Fu, J. M.; Guo, X. X.; Huo, H. Y.; Chen, Y.; Zhang, T. Easily decomposed discharge products induced by cathode construction for highly energy-efficient lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2019, 11, 14803–14809.
Wang, L. J.; Lyu, Z.; Gong, L. L.; Zhang, J.; Wu, Q.; Wang, X. Z.; Huo, F. W.; Huang, W.; Hu, Z.; Chen, W. Ruthenium-functionalized hierarchical carbon nanocages as efficient catalysts for Li-O2 batteries. ChemNanoMat 2017, 3, 415–419.
Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Bruce, P. G. The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 2013, 135, 494–500.
Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater. 2020, 32, 1904177.
Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 2017, 50, 435–444.
Luo, W. B.; Pham, T. V.; Guo, H. P.; Liu, H. K.; Dou, S. X. Three-dimensional array of TiN@Pt3Cu nanowires as an efficient porous electrode for the lithium-oxygen battery. ACS Nano 2017, 11, 1747–1754.
Lu, X. Y.; Zhang, L.; Sun, X. L.; Si, W. P.; Yan, C. L.; Schmidt, O. G. Bifunctional Au-Pd decorated MnOx nanomembranes as cathode materials for Li-O2 batteries. J. Mater. Chem. A 2016, 4, 4155–4160.
Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.
Jiang, Z. L.; Sun, H.; Shi, W. K.; Zhou, T. H.; Hu, J. Y.; Cheng, J. Y.; Hu, P. F.; Sun, S. G. Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery. Nano Res. 2019, 12, 1555–1562.
Cao, X. C.; Zheng, X. J.; Sun, Z. H.; Jin, C.; Tian, J. H.; Sun, S. R.; Yang, R. Z. Oxygen defect-ridden molybdenum oxide-coated carbon catalysts for Li-O2 battery cathodes. Appl. Catal. B:Environ. 2019, 253, 317–322.
Ma, Z. P.; Shao, G. J.; Fan, Y. Q.; Wang, G. L.; Song, J. J.; Shen, D. J. Construction of hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core-shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl. Mater. Interfaces 2016, 8, 9050–9058.
Zhang, J.; Luan, Y. P.; Lyu, Z.; Wang, L. J.; Xu, L. L.; Yuan, K. D.; Pan, F.; Lai, M.; Liu, Z. L.; Chen, W. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries. Nanoscale 2015, 7, 14881–14888.
Zheng, Y.; Gao, R.; Zheng, L. R.; Sun, L. M.; Hu, Z. B.; Liu, X. F. Ultrathin Co3O4 nanosheets with edge-enriched {111} planes as efficient catalysts for lithium-oxygen batteries. ACS Catal. 2019, 9, 3773–3782.
Lee, Y. J.; Kim, D. H.; Kang, T. G.; Ko, Y.; Kang, K.; Lee, Y. J. Bifunctional MnO2-coated Co3O4 hetero-structured catalysts for reversible Li-O2 batteries. Chem. Mater. 2017, 29, 10542–10550.
Xing, Y.; Yang, Y.; Chen, R. J.; Luo, M. C.; Chen, N.; Ye, Y. S.; Qian, J.; Li, L.; Wu, F.; Guo, S. J. Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high-performance aprotic Li-O2 battery. Small 2018, 14, 1704366.
Qiu, F. L.; He, P.; Jiang, J.; Zhang, X. P.; Tong, S. F.; Zhou, H. S. Ordered mesoporous TiC-C composites as cathode materials for Li-O2 batteries. Chem. Commun. 2016, 52, 2713–2716.
Hou, Y. Y.; Wang, J. Z.; Liu, L. L.; Liu, Y. Q.; Chou, S. L.; Shi, D. Q.; Liu, H. K.; Wu, Y. P.; Zhang, W. M.; Chen, J. Mo2C/CNT: An efficient catalyst for rechargeable Li-CO2 batteries. Adv. Funct. Mater. 2017, 27, 1700564.
Yang, C.; Guo, K. K.; Yuan, D. W.; Cheng, J. L.; Wang, B. Unraveling reaction mechanisms of Mo2C as cathode catalyst in a Li-CO2 battery. J. Am. Chem. Soc. 2020, 142, 6983–6990.
Luo, Y.; Jin, C.; Wang, Z. J.; Wei, M. H.; Yang, C. H.; Yang, R. Z.; Chen, Y.; Liu, M. L. A high-performance oxygen electrode for Li-O2 batteries: Mo2C nanoparticles grown on carbon fibers. J. Mater. Chem. A 2017, 5, 5690–5695.
Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Chen, Y. H.; Liu, Z.; Bruce, P. G. A stable cathode for the aprotic Li-O2 battery. Nat. Mater. 2013, 12, 1050–1056.
Sun, W. W.; Liu, C.; Li, Y. J.; Luo, S. Q.; Liu, S. K.; Hong, X. B.; Xie, K.; Liu, Y. M.; Tan, X. J.; Zheng, C. Rational construction of Fe2N@C yolk-shell nanoboxes as multifunctional hosts for ultralong lithium-sulfur batteries. ACS Nano 2019, 13, 12137–12147.
Li, G. R.; Song, J.; Pan, G. L.; Gao, X. P. Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 1680–1683.
Liu, J. M.; Wang, C. B.; Sun, H. M.; Wang, H.; Rong, F. L.; He, L. H.; Lou, Y. F.; Zhang, S.; Zhang, Z. H.; Du, M. CoOx/CoNy nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn-air battery. Appl. Catal. B:Environ. 2020, 279, 119407.
Hosseini-Benhangi, P. H.; Kung, C. H.; Alfantazi, A.; Gyenge, E. L. Controlling the interfacial environment in the electrosynthesis of MnOx nanostructures for high-performance oxygen reduction/evolution electrocatalysis. ACS Appl. Mater. Interfaces 2017, 9, 26771–26785.
Dai, L. N.; Sun, Q.; Chen, L. N.; Guo, H. H.; Nie, X. K.; Cheng, J.; Guo, J. G.; Li, J. W.; Lou, J.; Ci, L. J. Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries. Nano Res. 2020, 13, 2356–2364.
Zhang, P.; Sun, D. F.; He, M.; Lang, J. W.; Xu, S.; Yan, X. B. Synthesis of porous δ-MnO2 submicron tubes as highly efficient electrocatalyst for rechargeable Li-O2 batteries. ChemSusChem 2015, 8, 1972–1979.
Wang, J. J.; Dong, L. B.; Xu, C. J.; Ren, D. Y.; Ma, X. P.; Kang, F. Y. Polymorphous supercapacitors constructed from flexible three-dimensional carbon network/polyaniline/MnO2 composite textiles. ACS Appl. Mater. Interfaces 2018, 10, 10851–10859.
Qin, Y.; Lu, J.; Du, P.; Chen, Z. H.; Ren, Y.; Wu, T. P.; Miller, J. T.; Wen, J. G.; Miller, D. J.; Zhang, Z. C. et al. In situ fabrication of porous-carbon-supported α-MnO2 nanorods at room temperature: Application for rechargeable Li-O2 batteries. Energy Environ. Sci. 2013, 6, 519–531.
Ma, Z. P.; Jing, F. Y.; Fan, Y. Q.; Hou, L. Y.; Su, L.; Fan, L. K.; Shao, G. J. High-stability MnOx nanowires@C@MnOx nanosheet core-shell heterostructure pseudocapacitance electrode based on reversible phase transition mechanism. Small 2019, 15, 1900862.
Peng, X.; Guo, Y. Q.; Yin, Q.; Wu, J. C.; Zhao, J. Y.; Wang, C. M.; Tao, S.; Chu, W. S.; Wu, C. Z.; Xie, Y. Double-exchange effect in two-dimensional MnO2 nanomaterials. J. Am. Chem. Soc. 2017, 139, 5242–5248.
Xie, K.; Qin, X. T.; Wang, X. Z.; Wang, Y. N.; Tao, H. S.; Wu, Q.; Yang, L. J.; Hu, Z. Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 2012, 24, 347–352.
Lyu, Z.; Xu, D.; Yang, L. J.; Che, R. C.; Feng, R.; Zhao, J.; Li, Y.; Wu, Q.; Wang, X. Z.; Hu, Z. Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium-sulfur batteries. Nano Energy 2015, 12, 657–665.
Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 2015, 5, 6707–6712.
Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.
Sodtipinta, J.; Pon-On, W.; Veerasai, W.; Smith, S. M.; Pakawatpanurut, P. Chelating agent- and surfactant-assisted synthesis of manganese oxide/carbon nanotube composite for electrochemical capacitors. Mater. Res. Bull. 2013, 48, 1204–1212.
Yang, S. X.; He, P.; Zhou, H. S. Research progresses on materials and electrode design towards key challenges of Li-air batteries. Energy Storage Mater. 2018, 13, 29–48.
Shang, C. Q.; Dong, S. M.; Hu, P.; Guan, J.; Xiao, D. D.; Chen, X.; Zhang, L. X.; Gu, L.; Cui, G. L.; Chen, L. Q. Compatible interface design of CoO-based Li-O2 battery cathodes with long-cycling stability. Sci. Rep. 2015, 5, 8335.
Zhang, P.; Wang, R. T.; He, M.; Lang, J. W.; Xu, S.; Yan, X. B. 3D hierarchical Co/CoO-graphene-carbonized melamine foam as a superior cathode toward long-life lithium oxygen batteries. Adv. Funct. Mater. 2016, 26, 1354–1364.