Journal Home > Volume 15 , Issue 5

Smart drug delivery nanosystem is significant for tumor treatments due to its possibility of temporally, spatially, and dose-controlled release. However, the therapeutic efficacy of drug delivery nanosystem is often compromised in cancer treatment as the enrichment of therapeutic agents in the reticuloendothelial system. Herein, doxorubicin (DOX) loaded biomimetic drug delivery nanosystem with macrophage cell membrane (MCM) camouflaged, MnFe2O4-DOX-MCM nanocube (NC), is developed for cancer treatment with tumor targeting, pH-stimuli drug release, and chemo-photothermal therapeutic effects. The nanosystem shows the capability of immune escape and enhanced cellular uptake of cancer cells due to the MCM decoration. Acid-labile bond between the MnFe2O4 NCs and DOX remains stable at physiological condition and release drugs immediately in response to the endo-/lysosome pH stimuli. Meanwhile, the photothermal effect of the nanosystem destroys tumor tissue, which further promotes chemotherapeutic efficacy. In vivo results demonstrate the tumor homing ability and produce a notable synergistic therapeutic effect of the NCs. Thus, biomimetic pH-responsive drug delivery nanosystem, MnFe2O4-DOX-MCM NCs, is an effective nanoplatform, which might be potential application for cancer synergistic treatment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A pH-responsive biomimetic drug delivery nanosystem for targeted chemo-photothermal therapy of tumors

Show Author's information Yanmin Ju1,2Zhiyi Wang1Zeeshan Ali1Hongchen Zhang1Yazhou Wang1Nuo Xu3Hui Yin4Fugeng Sheng4Yanglong Hou1( )
Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), Beijing Innovation Centre for Engineering Science and Advanced Technology (BIC-ESAT), School of Materials Science and Engineering, Peking University, Beijing 100871, China
College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China

Abstract

Smart drug delivery nanosystem is significant for tumor treatments due to its possibility of temporally, spatially, and dose-controlled release. However, the therapeutic efficacy of drug delivery nanosystem is often compromised in cancer treatment as the enrichment of therapeutic agents in the reticuloendothelial system. Herein, doxorubicin (DOX) loaded biomimetic drug delivery nanosystem with macrophage cell membrane (MCM) camouflaged, MnFe2O4-DOX-MCM nanocube (NC), is developed for cancer treatment with tumor targeting, pH-stimuli drug release, and chemo-photothermal therapeutic effects. The nanosystem shows the capability of immune escape and enhanced cellular uptake of cancer cells due to the MCM decoration. Acid-labile bond between the MnFe2O4 NCs and DOX remains stable at physiological condition and release drugs immediately in response to the endo-/lysosome pH stimuli. Meanwhile, the photothermal effect of the nanosystem destroys tumor tissue, which further promotes chemotherapeutic efficacy. In vivo results demonstrate the tumor homing ability and produce a notable synergistic therapeutic effect of the NCs. Thus, biomimetic pH-responsive drug delivery nanosystem, MnFe2O4-DOX-MCM NCs, is an effective nanoplatform, which might be potential application for cancer synergistic treatment.

Keywords: drug delivery, synergistic therapy, macrophage cell membrane, pH stimuli

References(45)

1

Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2019. CA: Cancer J. Clin. 2019, 69, 7–34.

2

Chen, H. B.; Gu, Z. J.; An, H. W.; Chen, C. Y.; Chen, J.; Cui, R.; Chen, S. Q.; Chen, W. H.; Chen, X. S.; Chen, X. Y. et al. Precise nanomedicine for intelligent therapy of cancer. Sci. China Chem. 2018, 61, 1503–1552.

3

Liu, J. N.; Bu, W. B.; Shi, J. L. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem. Rev. 2017, 117, 6160–6224.

4

Chen, F. M.; Fang, Y. F.; Chen, X.; Deng, R.; Zhang, Y. J.; Shao, J. W. Recent advances of sorafenib nanoformulations for cancer therapy: Smart nanosystem and combination therapy. Asian J. Pharm. Sci. 2021, 16, 318–336.

5

Zou, P. F.; Chen, W. T.; Sun, T. Y.; Gao, Y. Y.; Li, L. L.; Wang, H. Recent advances: Peptides and self-assembled peptide-nanosystems for antimicrobial therapy and diagnosis. Biomater. Sci. 2020, 8, 4975–4996.

6

Biswas, S.; Kumari, P.; Lakhani, P. M.; Ghosh, B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur. J. Pharm. Sci. 2016, 83, 184–202.

7

Hatakeyama, H. Recent advances in endogenous and exogenous stimuli-responsive nanocarriers for drug delivery and therapeutics. Chem. Pharm. Bull. 2017, 65, 612–617.

8

Song, Y. H.; Li, Y. H.; Xu, Q. E.; Liu, Z. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: Advances, challenges, and outlook. Int. J. Nanomedicine 2017, 12, 87–110.

9

Zhu, H. J.; Li, J. C.; Qi, X. Y.; Chen, P.; Pu, K. Y. Oxygenic hybrid semiconducting nanoparticles for enhanced photodynamic therapy. Nano Lett. 2018, 18, 586–594.

10

Yu, J. C.; Chen, Y. L.; Zhang, Y. Q.; Yao, X. K.; Qian, C. G.; Huang, J.; Zhu, S.; Jiang, X. Q.; Shen, Q. D.; Gu, Z. pH-responsive and near-infrared-emissive polymer nanoparticles for simultaneous delivery, release, and fluorescence tracking of doxorubicin in vivo. Chem. Commun. 2014, 50, 4699–4702.

11
Tong, T. Y.; Guan, Y. P.; Gao, Y. J.; Xing, C. Y.; Zhang, S. Q.; Jiang, D. G.; Yang, X. W.; Kang, Y.; Pang, J. Smart nanocarriers as therapeutic platforms for bladder cancer. Nano Res., in press, https://doi.org/10.1007/s12274-021-3753-9.
12

Yang, G. B.; Xu, L. G.; Chao, Y.; Xu, J.; Sun, X. Q.; Wu, Y. F.; Peng, R.; Liu, Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 2017, 8, 902.

13

Luk, B. T.; Zhang, L. F. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Release 2015, 220, 600–607.

14

Kanamala, M.; Wilson, W. R.; Yang, M. M.; Palmer, B. D.; Wu, Z. M. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016, 85, 152–167.

15

Duan, N.; Wu, S. J.; Zhu, C. Q.; Ma, X. Y.; Wang, Z. P.; Yu, Y.; Jiang, Y. Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of salmonella typhimurium and staphylococcus aureus. Anal. Chim. Acta 2012, 723, 1–6.

16

Kim, D.; Jeong, Y. Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 2010, 4, 3689–3696.

17

Yu, J.; Yang, C.; Li, J. D. S.; Ding, Y. C.; Zhang, L.; Yousaf, M. Z.; Lin, J.; Pang, R.; Wei, L. B.; Xu, L. L. et al. Multifunctional Fe5C2 nanoparticles: A targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv. Mater. 2014, 26, 4114–4120.

18

Ding, D.; Zhang, Y. L.; Sykes, E. A.; Chen, L.; Chen, Z.; Tan, W. H. The influence of physiological environment on the targeting effect of aptamer-guided gold nanoparticles. Nano Res. 2019, 12, 129–135.

19

Dehaini, D.; Wei, X. L.; Fang, R. H.; Masson, S.; Angsantikul, P.; Luk, B. T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A. V. et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 2017, 29, 1606209.

20

Rao, L.; Bu, L. L.; Cai, B.; Xu, J. H.; Li, A.; Zhang, W. F.; Sun, Z. J.; Guo, S. S.; Liu, W.; Wang, T. H. et al. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv. Mater. 2016, 28, 3460–3466.

21

Hao, H. S.; Chen, Y.; Wu, M. Y. Biomimetic nanomedicine toward personalized disease theranostics. Nano Res. 2021, 14, 2491–2511.

22

Gong, H.; Zhang, Q. Z.; Komarla, A.; Wang, S. Y.; Duan, Y. O.; Zhou, Z. D.; Chen, F.; Fang, R. H.; Xu, S.; Gao, W. W. et al. Nanomaterial biointerfacing via mitochondrial membrane coating for targeted detoxification and molecular detection. Nano Lett. 2021, 21, 2603–2609.

23

Zhang, N.; Lin, J. Q.; Chew, S. Y. Neural cell membrane-coated nanoparticles for targeted and enhanced uptake by central nervous system cells. ACS Appl. Mater. Interfaces 2021, 13, 55840–55850.

24

Jahromi, L. P.; Shahbazi, M. A.; Maleki, A.; Azadi, A.; Santos, H. A. Chemically engineered immune cell-derived microrobots and biomimetic nanoparticles: Emerging biodiagnostic and therapeutic tools. Adv. Sci. 2021, 8, 2002499.

25

Chen, C. L.; Song, M. Y.; Du, Y. Y.; Yu, Y.; Li, C. G.; Han, Y.; Yan, F.; Shi, Z.; Feng, S. H. Tumor-associated-macrophage-membrane-coated nanoparticles for improved photodynamic immunotherapy. Nano Lett. 2021, 21, 5522–5531.

26

Chen, B. L.; Dai, W. B.; Mei, D.; Liu, T. Z.; Li, S. X.; He, B.; He, B.; Yuan, L.; Zhang, H.; Wang, X. Q. et al. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system. J. Control. Release 2016, 241, 68–80.

27

Cao, H. Q.; Zou, L. L.; He, B.; Zeng, L. J.; Huang, Y. Z.; Yu, H. J.; Zhang, P. C.; Yin, Q.; Zhang, Z. W.; Li, Y. P. Albumin biomimetic nanocorona improves tumor targeting and penetration for synergistic therapy of metastatic breast cancer. Adv. Funct. Mater. 2017, 27, 1605679.

28

Tan, T.; Hu, H. Y.; Wang, H.; Li, J.; Wang, Z. W.; Wang, J.; Wang, S. L.; Zhang, Z. W.; Li, Y. P. Bioinspired lipoproteins-mediated photothermia remodels tumor stroma to improve cancer cell accessibility of second nanoparticles. Nat. Commun. 2019, 10, 3322.

29

Yang, Z. W.; Yao, J. T.; Wang, J. X.; Zhang, C.; Cao, Y.; Hao, L.; Yang, C.; Wu, C. J.; Zhang, J. Q.; Wang, Z. G. et al. Ferrite-encapsulated nanoparticles with stable photothermal performance for multimodal imaging-guided atherosclerotic plaque neovascularization therapy. Biomater. Sci. 2021, 9, 5652–5664.

30

Wang, K.; Yang, P.; Guo, R. R.; Yao, X. X.; Yang, W. L. Photothermal performance of MFe2O4 nanoparticles. Chin. Chem. Lett. 2019, 30, 2013–2016.

31

Hou, L.; Tian, C. Y.; Yan, Y. S.; Zhang, L. W.; Zhang, H. J.; Zhang, Z. Z. Manganese-based nanoactivator optimizes cancer immunotherapy via enhancing innate immunity. ACS Nano 2020, 14, 3927–3940.

32

Lv, M. Z.; Chen, M. X.; Zhang, R.; Zhang, W.; Wang, C. G.; Zhang, Y.; Wei, X. M.; Guan, Y. K.; Liu, J. J.; Feng, K. C. et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 2020, 30, 966–979.

33

Wang, Z. Y.; Liu, J.; Li, T. R.; Liu, J.; Wang, B. D. Controlled synthesis of MnFe2O4 nanoparticles and Gd complex-based nanocomposites as tunable and enhanced T1/T2-weighted MRI contrast agents. J. Mater. Chem. B 2014, 2, 4748–4753.

34

Wang, B. D.; Hai, J.; Wang, Q.; Li, T. R.; Yang, Z. Y. Coupling of luminescent terbium complexes to Fe3O4 nanoparticles for imaging applications. Angew. Chem., Int. Ed. 2011, 50, 3063–3066.

35

Hu, C. M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. F. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980–10985.

36

Cao, H. Q.; Dan, Z. L.; He, X. Y.; Zhang, Z. W.; Yu, H. J.; Yin, Q.; Li, Y. P. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano 2016, 10, 7738–7748.

37

Ju, Y. M.; Zhang, H. L.; Yu, J.; Tong, S. Y.; Tian, N.; Wang, Z. Y.; Wang, X. B.; Su, X. T.; Chu, X.; Lin, J. et al. Monodisperse Au-Fe2C janus nanoparticles: An attractive multifunctional material for triple-modal imaging-guided tumor photothermal therapy. ACS Nano 2017, 11, 9239–9248.

38

Sankoh, S.; Thammakhet, C.; Numnuam, A.; Limbut, W.; Kanatharana, P.; Thavarungkul, P. 4-mercaptophenylboronic acid functionalized gold nanoparticles for colorimetric sialic acid detection. Biosens. Bioelectron. 2016, 85, 743–750.

39

Rao, L.; Meng, Q. F.; Bu, L. L.; Cai, B.; Huang, Q. Q.; Sun, Z. J.; Zhang, W. F.; Li, A.; Guo, S. S.; Liu, W. et al. Erythrocyte membrane-coated upconversion nanoparticles with minimal protein adsorption for enhanced tumor imaging. ACS Appl. Mater. Interfaces 2017, 9, 2159–2168.

40

Zhang, Q. Z.; Dehaini, D.; Zhang, Y.; Zhou, J. L.; Chen, X. Y.; Zhang, L. F.; Fang, R. H.; Gao, W. W.; Zhang, L. F. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 2018, 13, 1182–1190.

41

Ren, X. Q.; Zheng, R.; Fang, X. L.; Wang, X. F.; Zhang, X. Y.; Yang, W. L.; Sha, X. Y. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials 2016, 92, 13–24.

42

Wu, W. T.; Shen, J.; Banerjee, P.; Zhou, S. Q. Core-shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials 2010, 31, 7555–7566.

43

Wang, C.; Xu, H.; Liang, C.; Liu, Y. M.; Li, Z. W.; Yang, G. B.; Cheng, L.; Li, Y. G.; Liu, Z. Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano 2013, 7, 6782–6795.

44

Kim, J.; Cho, H. R.; Jeon, H.; Kim, D.; Song, C.; Lee, N.; Choi, S. H.; Hyeon, T. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J. Am. Chem. Soc. 2017, 139, 10992–10995.

45

Lee, J.; Yang, J.; Ko, H.; Oh, S. J.; Kang, J.; Son, J. H.; Lee, K.; Lee, S. W.; Yoon, H. G.; Suh, J. S. et al. Multifunctional magnetic gold nanocomposites: Human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy. Adv. Funct. Mater. 2008, 18, 258–264.

File
12274_2022_4077_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 October 2021
Revised: 29 November 2021
Accepted: 17 December 2021
Published: 08 February 2022
Issue date: May 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52027801, 51631001, and 52002402), the National Key R&D Program of China (No. 2017YFA0206301) the Natural Science Foundation of Beijing Municipality (No. 2191001), and the China-German Collaboration Project (No. M-0199), and the Natural Science Foundation of Jiangsu Province (No. BK20200574). The animal study protocol was approved by the Institutional Animal Care and Use Committee at Peking University.

Return