Journal Home > Volume 15 , Issue 5

Designing hierarchical heterostructure to optimize the adsorption of hydrogen intermediate (H*) is impressive for hydrogen evolution reaction (HER) catalysis. Herein, we show that vertically mounting two-dimensional (2D) layered molybdenum disulfide (MoS2) nanosheets on 2D nonlayered dimolybdenum carbide (Mo2C) nanomeshes to form a hierarchical heterostructure largely accelerates the HER kinetics in acidic electrolyte due to the weakening adsorption strength of H* on 2D Mo2C nanomeshes. Our hierarchical MoS2/Mo2C heterostructure therefore gives a decrease of overpotential for up to 500 mV at −10 mA·cm−2 and an almost 200-fold higher kinetics current density compared with the pristine Mo2C nanomeshes and maintains robust stability with a small drop of overpotential for only 16 mV upon 5,000 cycles. We further rationalize this finding by theoretical calculations and find an optimized adsorption free energy of H*, identifying that the MoS2 featuring strong H* desorption plays a key role in weakening the strong binding of Mo2C with H* and therefore improves the intrinsic HER activity on active C sites of Mo2C. This present finding shines the light on the rational design of heterostructured catalysts with synergistic geometry.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Vertically mounting molybdenum disulfide nanosheets on dimolybdenum carbide nanomeshes enables efficient hydrogen evolution

Show Author's information Tingting Wang1Pengyan Wang1Yajun Pang2( )Yitian Wu2Jin Yang2Hao Chen2Xiaorui Gao3Shichun Mu1Zongkui Kou1( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China

Abstract

Designing hierarchical heterostructure to optimize the adsorption of hydrogen intermediate (H*) is impressive for hydrogen evolution reaction (HER) catalysis. Herein, we show that vertically mounting two-dimensional (2D) layered molybdenum disulfide (MoS2) nanosheets on 2D nonlayered dimolybdenum carbide (Mo2C) nanomeshes to form a hierarchical heterostructure largely accelerates the HER kinetics in acidic electrolyte due to the weakening adsorption strength of H* on 2D Mo2C nanomeshes. Our hierarchical MoS2/Mo2C heterostructure therefore gives a decrease of overpotential for up to 500 mV at −10 mA·cm−2 and an almost 200-fold higher kinetics current density compared with the pristine Mo2C nanomeshes and maintains robust stability with a small drop of overpotential for only 16 mV upon 5,000 cycles. We further rationalize this finding by theoretical calculations and find an optimized adsorption free energy of H*, identifying that the MoS2 featuring strong H* desorption plays a key role in weakening the strong binding of Mo2C with H* and therefore improves the intrinsic HER activity on active C sites of Mo2C. This present finding shines the light on the rational design of heterostructured catalysts with synergistic geometry.

Keywords: hydrogen evolution reaction, transition metal carbide, transition metal disulfide, two-dimensional nonlayered/layered heterostructure, hydrogen adsorption/desorption

References(36)

1

Yu, Z.; Duan, Y.; Feng, X.; Yu, X.; Gao, M.; Yu, S. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

2

Li, Y.; Tan, X.; Tan, H.; Ren, H.; Chen, S.; Yang, W.; Smith, S. C.; Zhao, C. Phosphine vapor-assisted construction of heterostructured Ni2P/NiTe2 catalysts for efficient hydrogen. Energy Environ. Sci. 2020, 13, 1799–1807.

3

Wang, Y.; Zheng, X.; Wang, D. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

4

Yang, Y.; Qian, Y.; Li, H.; Zhang, Z.; Mu, Y.; Do, D.; Zhou, B.; Dong, J.; Yan, W.; Qin, Y.; Fang, L.; Feng, R.; Zhou, J.; Zhang, P.; Dong, J.; Yu, G.; Liu, Y.; Zhang, X.; Fan, X. O-coordinated W–Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 2020, 6, eaba6586.

5

Yang, J.; Li, W. H.; Tan, S.; Xu, K.; Wang, Y.; Wang, D.; Li, Y. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem. Int. Ed. 2021, 60, 19085–19091.

6

Yang, H.; Driess, M.; Menezes, P. W. Self-supported electrocatalysts for practical water electrolysis. Adv. Energy Mater. 2021, 11, 2102074.

7

Wang, P.; Yan, Y.; Cao, J.; Feng, J.; Qi, J. Surface activation towards manganese dioxide nanosheet arrays via plasma engineering as cathode and anode for efficient water splitting. J. Colloid Interface Sci. 2021, 586, 95–102.

8

Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.

9

Xu, K.; Sun, Y.; Li, X.; Zhao, Z.; Zhang, Y.; Li, C.; Fan, H. J. Fluorine-induced dual defects in cobalt phosphide nanosheets enhance hydrogen evolution reaction activity. ACS Materials Lett. 2020, 2, 736–743.

10

Ma, Y.; Chen, M.; Geng, H.; Dong, H.; Wu, P.; Li, X.; Guan, G.; Wang, T. Synergistically tuning electronic structure of porous Β-Mo2C spheres by Co doping and Mo-vacancies defect engineering for optimizing hydrogen evolution reaction activity. Adv. Funct. Mater. 2020, 30, 2000561.

11

Tranca D. C.; Rodríguez-Hernández F.; Seifert G.; Zhuang X. Theoretical models for hydrogen evolution reaction at combined Mo2C and N-doped graphene. J. Catal. 2020, 381, 234–247.

12

He L.; Zhang W.; Mo Q.; Huang W.; Yang L.; Gao Q. Molybdenum carbide-oxide heterostructures: In situ surface reconfiguration toward efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2020, 59, 3544–3548.

13

Shi, Z.; Nie, K.; Shao, Z.-J.; Gao, B.; Lin, H.; Zhang, H.; Liu, B.; Wang, Y.; Zhang, Y.; Sun, X.; Cao, X.-M.; Hu, P.; Gao, Q.; Tang, Y. Phosphorus-Mo2C@carbon nanowires toward efficient electrochemical hydrogen evolution: Composition, structural and electronic regulation. Energy Environ. Sci. 2017, 10, 1262–1271.

14

Ma, Y.; Yang, T.; Zou, H.; Zang, W.; Kou, Z.; Mao, L.; Feng, Y.; Shen, L.; Pennycook, S. J.; Duan, L.; Li, X.; Wang, J. Synergizing Mo single atoms and Mo2C nanoparticles on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia. Adv. Mater. 2020, 32, 2002177.

15

Zhao, Z.; Qin, F.; Kasiraju, S.; Xie, L.; Alam, M. K.; Chen, S.; Wang, D.; Ren, Z.; Wang, Z.; Grabow, L. C.; Bao, J. Vertically aligned MoS2/Mo2C hybrid nanosheets grown on carbon paper for efficient electrocatalytic hydrogen evolution. ACS Catal. 2017, 7, 7312–7318.

16

Chen, Y.; Gao, B.; Wang, M.; Xiao, X.; Lv, A.; Jiao, S.; Chu, P. K. Dual-phase MoC-Mo2C nanosheets prepared by molten salt electrochemical conversion of CO2 as excellent electrocatalysts for the hydrogen evolution reaction. Nano Energy 2021, 90, 106533.

17

Wei, H.; Wang, J.; Lin, Q.; Zou, Y.; Chen, X.; Zhao, H.; Li, J.; Jin, H.; Lei, Y.; Wang, S. Incorporating ultra-small N-doped Mo2C nanoparticles onto 3D N-doped flower-like carbon nanospheres for robust electrocatalytic hydrogen evolution. Nano Energy 2021, 86, 106047.

18

Jin, B.; Liang, F.; Hu, Z.; Wei, P.; Liu, K.; Hu, X.; Van Tendeloo, G.; Lin, Z.; Li, H.; Zhou, X.; Xiong, Q.; Zhai, T. Nonlayered CdSe flakes homojunctions. Adv. Funct. Mater. 2020, 30, 1908902.

19

Kou, Z.; Wang, T.; Gu, Q.; Xiong, M.; Zheng, L.; Li, X.; Pan, Z.; Chen, H.; Verpoort, F.; Cheetham, A. K.; Mu, S.; Wang, J. Rational design of holey 2D nonlayered transition metal carbide/nitride heterostructure nanosheets for highly efficient water oxidation. Adv. Energy Mater. 2019, 9, 1803768.

20

Yang, S.; Wang, Y.; Zhang, H.; Zhang, Y.; Liu, L.; Fang, L.; Yang, X.; Gu, X.; Wang, Y. Unique three-dimensional Mo2C@MoS2 heterojunction nanostructure with S vacancies as outstanding all-pH range electrocatalyst for hydrogen evolution. J. Catal. 2019, 371, 20–26.

21

Li, S.; Wang, S.; Salamone, M. M.; Robertson, A. W.; Nayak, S.; Kim, H.; Tsang, S. C. E.; Pasta, M.; Warner, J. H. Edge-enriched 2D MoS2 thin films grown by chemical vapor deposition for enhanced catalytic performance. ACS Catal. 2017, 7, 877–886.

22

Ren, W.; Zhang, H.; Guan, C.; Cheng, C. Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv. Funct. Mater. 2017, 27, 1702116.

23

Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W. D.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

24

Hu, J.; Xie, Y.; Zhou, X.; Zhang, Z. Engineering hollow porous carbon-sphere-confined MoS2 with expanded (002) planes for boosting potassium-ion storage. ACS Appl. Mater. Interfaces 2020, 12, 1232–1240.

25

Lin, H.; Shi, Z.; He, S.; Yu, X.; Wang, S.; Gao, Q.; Tang, Y. Heteronanowires of MoC–Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem. Sci. 2016, 7, 3399–3405.

26

Aziza, Z. B.; Henck, H.; Felice, D. D.; Pierucci, D.; Chaste, J.; Naylor, C. H.; Balan, A.; Dappe, Y. J.; Johnson, A. T. C.; Ouerghi, A. Bandgap inhomogeneity of MoS2 monolayer on epitaxial graphene bilayer in van der waals p–n junction. Carbon 2016, 110, 396–403.

27

Kou, Z.; Yu, Y.; Liu, X.; Gao, X.; Zheng, L.; Zou, H.; Pang, Y.; Wang, Z.; Pan, Z.; He, J.; Pennycook, S. J.; Wang, J. Potential-dependent phase transition and Mo-enriched surface reconstruction of γ-CoOOH in a heterostructured Co-Mo2C precatalyst enable water oxidation. ACS Catal. 2020, 10, 4411–4419.

28

Chen, W.; Pei, J.; He, C.-T.; Wan, J.; Ren, H.; Zhu, Y.; Wang, Y.; Dong, J.; Tian, S.; Cheong, W.-C.; Lu, S.; Zheng, L.; Zheng, X.; Yan, W.; Zhuang, Z.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.

29

Zhang, Y.; Gao, Y.; Yao, S.; Li, S.; Asakura, H.; Teramura, K.; Wang, H.; Ma, D. Sublimation-induced sulfur vacancies in MoS2 catalyst for one-pot synthesis of secondary amines. ACS Catal. 2019, 9, 7967–7975.

30

Lu, Y.; Yue, C.; Li, Y.; Bao, W.; Guo, X.; Yang, W.; Liu, Z.; Jiang, P.; Yan, W.; Liu, S.; Pan, Y.; Liu, Y. Atomically dispersed Ni on Mo2C embedded in N, P co-doped carbon derived from polyoxometalate supramolecule for high-efficiency hydrogen evolution electrocatalysis. Appl. Catal. B-Environ. 2021, 296, 120336.

31

Pang, Y.; Yu, Y.; Chen, H.; Xu, G.; Miao, L.; Liu, X.; Pan, Z.; Kou, Z.; Wu, Y.; Wang, J. In situ electrochemical oxidation of electrodeposited Ni-based nanostructure promotes alkaline hydrogen production. Nanotechnology 2019, 30, 474001.

32

Cai, J.; Song, Y.; Zang, Y.; Niu, S.; Wu, Y.; Xie, Y.; Zheng, X.; Liu, Y.; Lin, Y.; Liu, X.; Wang, G.; Qian, Y. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Sci. Adv. 2020, 6, eaaw8113.

33

Zhang, H.; Li, X.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S. L.; Maijenburg, A. W.; Wehrspohn, R. B. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1706847.

34

Su, H.; Song, S.; Li, S.; Gao, Y.; Ge, L.; Song, W.; Ma, T.; Liu, J. High-valent bimetal Ni3S2/Co3S4 induced by Cu doping for bifunctional electrocatalytic water splitting. Appl. Catal. B-Environ. 2021, 293, 120225.

35

Riyajuddin, S.; Azmi, K.; Pahuja, M.; Kumar, S.; Maruyama, T.; Bera, C.; Ghosh, K. Super-hydrophilic hierarchical Ni-foam-graphene-carbon nanotubes-Ni2P–CuP2 nano-architecture as efficient electrocatalyst for overall water splitting. ACS Nano 2021, 15, 5586–5599.

36

Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem., Int. Ed. 2016, 55, 6702–6707.

File
12274_2022_4072_MOESM1_ESM.pdf (788.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 November 2021
Revised: 13 December 2021
Accepted: 15 December 2021
Published: 26 January 2022
Issue date: May 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors thank the supports from the Fundamental Research Funds for the Central Universities (No. 40120631), the Zhejiang Provincial Natural Science Foundation (Nos. LQ22B060003 and LY20E020004), the Fundamental Research Funds for the Provincial Universities of Zhejiang (No. 2020YQ005), and the Research Foundation of Talented Scholars of Zhejiang A & F University (No. 2020FR069).

Return