Journal Home > Volume 15 , Issue 5

Reconfigurable devices with customized functionalities hold great potential in addressing the scaling limits of silicon-based field-effect transistors (FETs). The conventional reconfigurable FETs are limited to the applications in logic circuits, and the commonly used multi-gate programming strategies often lead to high power consumption and device complexity. Here, we report a reconfigurable WSe2 optoelectronic device that can function as photodiode, artificial synapse, and 2-bit memory in a single device, enabled by an asymmetric floating gate (AFG) that can continuously program the device into different homojunction modes. The lateral p−n homojunction formed in the AFG device exhibits high-performance self-powered photodetection, with a responsivity over 0.17 A·W−1 and a wide detection spectral range from violet to near-infrared region. The AFG device can also mimic synaptic features of biological synapses and achieve distinct potentiation/depression behaviors under the modulation of both drain-source bias and light illumination. Moreover, when working as a 2-bit memory via the transition between n−n+ and p−n homojunctions, the AFG device shows four distinct conductive states with a high on/off current ratio over 106 and good repeatability. Combining reduced processing complexity and reconfigurable functionalities, the WSe2 AFG devices demonstrate great potential towards high-performance photoelectric interconnected circuits.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Two-dimensional reconfigurable electronics enabled by asymmetric floating gate

Show Author's information Tengyu Jin1,2Jing Gao2Yanan Wang2Yue Zheng2Shuo Sun2Lei Liu3Ming Lin4Wei Chen1,2,5,6( )
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
Department of Physics, National University of Singapore, Singapore 117542, Singapore
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology, and Research (A*STAR), Singapore 138634, Singapore
Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China

Abstract

Reconfigurable devices with customized functionalities hold great potential in addressing the scaling limits of silicon-based field-effect transistors (FETs). The conventional reconfigurable FETs are limited to the applications in logic circuits, and the commonly used multi-gate programming strategies often lead to high power consumption and device complexity. Here, we report a reconfigurable WSe2 optoelectronic device that can function as photodiode, artificial synapse, and 2-bit memory in a single device, enabled by an asymmetric floating gate (AFG) that can continuously program the device into different homojunction modes. The lateral p−n homojunction formed in the AFG device exhibits high-performance self-powered photodetection, with a responsivity over 0.17 A·W−1 and a wide detection spectral range from violet to near-infrared region. The AFG device can also mimic synaptic features of biological synapses and achieve distinct potentiation/depression behaviors under the modulation of both drain-source bias and light illumination. Moreover, when working as a 2-bit memory via the transition between n−n+ and p−n homojunctions, the AFG device shows four distinct conductive states with a high on/off current ratio over 106 and good repeatability. Combining reduced processing complexity and reconfigurable functionalities, the WSe2 AFG devices demonstrate great potential towards high-performance photoelectric interconnected circuits.

Keywords: two-dimensional (2D) materials, photodiode, homojunction, artificial synapse, reconfigurable device, 2-bit memory

References(60)

1

Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518.

2

Jing, X.; Illarionov, Y.; Yalon, E.; Zhou, P.; Grasser, T.; Shi, Y. Y.; Lanza, M. Engineering field effect transistors with 2D semiconducting channels: Status and prospects. Adv. Funct. Mater. 2020, 30, 1901971.

3

Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.

4

Iannaccone, G.; Bonaccorso, F.; Colombo, L.; Fiori, G. Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 2018, 13, 183–191.

5

Khan, A. I.; Keshavarzi, A.; Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 2020, 3, 588–597.

6

Liu, X. L.; Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 2019, 4, 669–684.

7

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

8

Di, J. Y.; Du, J. H.; Lin, Z. H.; Liu, S. Z.; Ouyang, J. Y.; Chang, J. J. Recent advances in resistive random access memory based on lead halide perovskite. InfoMat 2021, 3, 293–315.

9

Jiang, H. J.; Zheng, L.; Liu, Z.; Wang, X. W. Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat 2020, 2, 1077–1094.

10

Park, S. J.; Jeon, D. Y.; Piontek, S.; Grube, M.; Ocker, J.; Sessi, V.; Heinzig, A.; Trommer, J.; Kim, G. T.; Mikolajick, T. et al. Reconfigurable Si nanowire nonvolatile transistors. Adv. Electron. Mater. 2018, 4, 1700399.

11

Mikolajick, T.; Heinzig, A.; Trommer, J.; Baldauf, T.; Weber, W. M. The RFET-a reconfigurable nanowire transistor and its application to novel electronic circuits and systems. Semicond. Sci. Technol. 2017, 32, 043001.

12

Pan, C.; Wang, C. Y.; Liang, S. J.; Wang, Y.; Cao, T. J.; Wang, P. F.; Wang, C.; Wang, S.; Cheng, B.; Gao, A. Y. et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 2020, 3, 383–390.

13

Sutar, S.; Agnihotri, P.; Comfort, E.; Taniguchi, T.; Watanabe, K.; Lee, J. U. Reconfigurable p–n junction diodes and the photovoltaic effect in exfoliated MoS2 films. Appl. Phys. Lett. 2014, 104, 122104.

14

Lv, L.; Zhuge, F. W.; Xie, F. J.; Xiong, X. J.; Zhang, Q. F.; Zhang, N.; Huang, Y.; Zhai, T. Y. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat. Commun. 2019, 10, 3331.

15

Wu, G. J.; Tian, B. B.; Liu, L.; Lv, W.; Wu, S.; Wang, X. D.; Chen, Y.; Li, J. Y.; Wang, Z.; Wu, S. Q. et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 2020, 3, 43–50.

16

Tian, H.; Deng, B. C.; Chin, M. L.; Yan, X. D.; Jiang, H.; Han, S. J.; Sun, V.; Xia, Q. F.; Dubey, M.; Xia, F. N. et al. A dynamically reconfigurable ambipolar black phosphorus memory device. ACS Nano 2016, 10, 10428–10435.

17

Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.

18

Schulman, D. S.; Arnold, A. J.; Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 2018, 47, 3037–3058.

19

Niu, T. C.; Zhang, J. L.; Chen, W. Surface engineering of two-dimensional materials. Chem. Nano. Mat 2019, 5, 6–23.

20

Wang, F. K.; Pei, K.; Li, Y.; Li, H. Q.; Zhai, T. Y. 2D homojunctions for electronics and optoelectronics. Adv. Mater. 2021, 33, 2005303.

21

Lee, S. J.; Lin, Z. Y.; Huang, J.; Choi, C. S.; Chen, P.; Liu, Y.; Guo, J.; Jia, C. C.; Wang, Y. L. et al. Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nat. Electron. 2020, 3, 630–637.

22

Chen, H. W.; Xue, X. Y.; Liu, C. S.; Fang, J. B.; Wang, Z.; Wang, J. L.; Zhang, D. W.; Hu, W. D.; Zhou, P. Logic gates based on neuristors made from two-dimensional materials. Nat. Electron. 2021, 4, 399–404.

23

Liu, C. S.; Chen, H. W.; Wang, S. Y.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557.

24

Jin, T. Y.; Zheng, Y.; Gao, J.; Wang, Y. N.; Li, E. L.; Chen, H. P.; Pan, X.; Lin, M.; Chen, W. Controlling native oxidation of HfS2 for 2D materials based flash memory and artificial synapse. ACS Appl. Mater. Interfaces 2021, 13, 10639–10649.

25

Vu, Q. A.; Kim, H.; Nguyen, V. L.; Won, U. Y.; Adhikari, S.; Kim, K.; Lee, Y. H.; Yu, W. J. A high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking. Adv. Mater. 2017, 29, 1703363.

26

Gurram, M.; Omar, S.; Zihlmann, S.; Makk, P.; Li, Q. C.; Zhang, Y. F.; Schönenberger, C.; van Wees, B. J. Spin transport in two-layer-CVD-hBN/graphene/hBN heterostructures. Phys. Rev. B 2018, 97, 045411.

27

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

28

Lai, S.; Byeon, S.; Jang, S. K.; Lee, J.; Lee, B. H.; Park, J. H.; Kim, Y. H.; Lee, S. HfO2/HfS2 hybrid heterostructure fabricated via controllable chemical conversion of two-dimensional HfS2. Nanoscale 2018, 10, 18758–18766.

29

Wen, C.; Banshchikov, A. G.; Illarionov, Y. Y.; Frammelsberger, W.; Knobloch, T.; Hui, F.; Sokolov, N. S.; Grasser, T.; Lanza, M. Dielectric properties of ultrathin CaF2 ionic crystals. Adv. Mater. 2020, 32, 2002525.

30

Peimyoo, N.; Barnes, M. D.; Mehew, J. D.; De Sanctis, A.; Amit, I.; Escolar, J.; Anastasiou, K.; Rooney, A. P.; Haigh, S. J.; Russo, S. et al. Laser-writable high-k dielectric for van der Waals nanoelectronics. Sci. Adv. 2019, 5, eaau0906.

31

Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013, 7, 3246–3252.

32

Zhang, E. Z.; Wang, W. Y.; Zhang, C.; Jin, Y. B.; Zhu, G. D.; Sun, Q. Q.; Zhang, D. W.; Zhou, P.; Xiu, F. X. Tunable charge-trap memory based on few-layer MoS2. ACS Nano 2015, 9, 612–619.

33

Bertolazzi, S.; Bondavalli, P.; Roche, S.; San, T.; Choi, S. Y.; Colombo, L.; Bonaccorso, F.; Samori, P. Nonvolatile memories based on graphene and related 2D materials. Adv. Mater. 2019, 31, 1806663.

34

Lei, B.; Zheng, Y.; Hu, Z. H.; Guo, R.; Xiang, D.; Liu, T.; Wang, Y. N.; Lai, M.; He, J.; Chen, W. Nondestructive hole doping enabled photocurrent enhancement of layered tungsten diselenide. 2D Mater. 2019, 6, 024002.

35

Lei, B.; Pan, Y. Y.; Hu, Z. H.; Zhang, J. L.; Xiang, D.; Zheng, Y.; Guo, R.; Han, C.; Wang, L. H.; Lu, J. et al. Direct observation of semiconductor-metal phase transition in bilayer tungsten diselenide induced by potassium surface functionalization. ACS Nano 2018, 12, 2070–2077.

36

Zhang, Y. W.; Ma, K. K.; Zhao, C.; Hong, W.; Nie, C. J.; Qiu, Z. J.; Wang, S. An ultrafast WSe2 photodiode based on a lateral p-i-n homojunction. ACS Nano 2021, 15, 4405–4415.

37

Han, C.; Hu, Z. H.; Gomes, L. C.; Bao, Y.; Carvalho, A.; Tan, S. J. R.; Lei, B.; Xiang, D.; Wu, J.; Qi, D. Y. et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett. 2017, 17, 4122–4129.

38

Zhu, C. G.; Sun, X. X.; Liu, H. W.; Zheng, B. Y.; Wang, X. W.; Liu, Y.; Zubair, M.; Wang, X.; Zhu, X. L.; Li, D. et al. Nonvolatile MoTe2 p–n diodes for optoelectronic logics. ACS Nano 2019, 13, 7216–7222.

39

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 2016, 10, 216–226.

40

Bao, C. X.; Chen, Z. L.; Fang, Y. J.; Wei, H. T.; Deng, Y. H.; Xiao, X.; Li, L. L.; Huang, J. S. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv. Mater. 2017, 29, 1703209.

41

Cuce, E.; Cuce, P. M.; Bali, T. An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters. Appl. Energy 2013, 111, 374–382.

42

Singh, P.; Ravindra, N. M. Temperature dependence of solar cell performance—An analysis. Sol. Energy Mater. Sol. Cells 2012, 101, 36–45.

43

Chai, Y. In-sensor computing for machine vision. Nature 2020, 579, 32–33.

44

Zhou, F. C.; Zhou, Z.; Chen, J. W.; Choy, T. H.; Wang, J. L.; Zhang, N.; Lin, Z. Y.; Yu, S. M.; Kang, J. F.; Wong, H. S. P. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782.

45

Zhou, F. C.; Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 2020, 3, 664–671.

46

Xia, Q. F.; Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019, 18, 309–323.

47

Sangwan, V. K.; Hersam, M. C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 2020, 15, 517–528.

48

Pan, X.; Jin, T. Y.; Gao, J.; Han, C.; Shi, Y. M.; Chen, W. Stimuli-enabled artificial synapses for neuromorphic perception: Progress and perspectives. Small 2020, 16, 2001504.

49

Wang, Y. N.; Zheng, Y.; Gao, J.; Jin, T. Y.; Li, E. L.; Lian, X.; Pan, X.; Han, C.; Chen, H. P.; Chen, W. Band-tailored van der Waals heterostructure for multilevel memory and artificial synapse. InfoMat 2021, 3, 917–928.

50

Zhang, J. Y.; Shi, Q. Q.; Wang, R. Z.; Zhang, X.; Li, L.; Zhang, J. H.; Tian, L.; Xiong, L. Z.; Huang, J. Spectrum-dependent photonic synapses based on 2D imine polymers for power-efficient neuromorphic computing. InfoMat 2021, 3, 904–916.

51

Citri, A.; Malenka, R. C. Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology 2008, 33, 18–41.

52

Lee, Y.; Lee, T. W. Organic synapses for neuromorphic electronics: From brain-inspired computing to sensorimotor nervetronics. Acc. Chem. Res. 2019, 52, 964–974.

53

Seo, S.; Kang, B. S.; Lee, J. J.; Ryu, H. J.; Kim, S.; Kim, H.; Oh, S. et al. Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition. Nat. Commun. 2020, 11, 3936.

54

Yang, C. S.; Shang, D. S.; Liu, N.; Fuller, E. J.; Agrawal, S.; Talin, A. A.; Li, Y. Q.; Shen, B. G.; Sun, Y. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater. 2018, 28, 1804170.

55

Zucker, R. S.; Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64, 355–405.

56

Yang, X.; Chen, A. B. K.; Joon Choi, B.; Chen, I. W. Demonstration and modeling of multi-bit resistance random access memory. Appl. Phys. Lett. 2013, 102, 043502.

57

Chen, Y. Q.; Yu, J.; Zhuge, F. W.; He, Y. H.; Zhang, Q. F.; Yu, S. W.; Liu, K. L.; Li, L.; Ma, Y.; Zhai, T. Y. An asymmetric hot carrier tunneling van der Waals heterostructure for multibit optoelectronic memory. Mater. Horiz. 2020, 7, 1331–1340.

58

Han, S. T.; Zhou, Y.; Chen, B.; Zhou, L.; Yan, Y.; Zhang, H.; Roy, V. A. L. Two-dimensional molybdenum disulphide nanosheet-covered metal nanoparticle array as a floating gate in multi-functional flash memories. Nanoscale 2015, 7, 17496–17503.

59

Lyu, B. Z.; Choi, Y.; Jing, H. Y.; Qian, C.; Kang, H.; Lee, S.; Cho, J. H. 2D MXene-TiO2 core-shell nanosheets as a data-storage medium in memory devices. Adv. Mater. 2020, 32, 1907633.

60

Zhang, Z. H.; Wang, Z. W.; Shi, T.; Bi, C.; Rao, F.; Cai, Y. M.; Liu, Q.; Wu, H. Q.; Zhou, P. Memory materials and devices: From concept to application. InfoMat 2020, 2, 261–290.

File
12274_2022_4070_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 October 2021
Revised: 09 December 2021
Accepted: 13 December 2021
Published: 29 January 2022
Issue date: May 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

Authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. U2032147, 21872100, and 11727902), Ministry of Education (MOE), Singapore (No. MOE-T2EP50220–0001), and the Science and Engineering Research Council of A*STAR (Agency for Science, Technology, and Research) Singapore (No. A20G9b0135).

Return