Journal Home > Volume 15 , Issue 5

Ca2+ plays critical roles in the development of diseases, whereas existing various Ca regulation methods have been greatly restricted in their clinical applications due to their high toxicity and inefficiency. To solve this issue, with the help of Ca overexpressed tumor drug resistance model, the phytic acid (PA)-modified CeO2 nano-inhibitors have been rationally designed as an unprecedentedly safe and efficient Ca2+ inhibitor to successfully reverse tumor drug resistance through Ca2+ negative regulation strategy. Using doxorubicin (Dox) as a model chemotherapeutic drug, the Ca2+ nano-inhibitors efficiently deprived intracellular excessive free Ca2+, suppressed P-glycoprotein (P-gp) expression and significantly enhanced intracellular drug accumulation in Dox-resistant tumor cells. This Ca2+ negative regulation strategy improved the intratumoral Dox concentration by a factor of 12.4 and nearly eradicated tumors without obvious adverse effects. Besides, nanocerias as pH-regulated nanozyme greatly alleviated the adverse effects of chemotherapeutic drug on normal cells/organs and substantially improved survivals of mice. We anticipate that this safe and effective Ca2+ negative regulation strategy has potentials to conquer the pitfalls of traditional Ca inhibitors, improve therapeutic efficacy of common chemotherapeutic drugs and serves as a facile and effective treatment platform of other Ca2+ associated diseases.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Phytic acid-modified CeO2 as Ca2+ inhibitor for a security reversal of tumor drug resistance

Show Author's information Zhimin Tian1,§Junlong Zhao2,§Shoujie Zhao3,§Huicheng Li4Zhixiong Guo1Zechen Liang1Jiayuan Li1Yongquan Qu1( )Dongfeng Chen5( )Lei Liu5( )
Department Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, China
Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing 400042, China

§ Zhimin Tian, Junlong Zhao, and Shoujie Zhao contributed equally to this work.

Abstract

Ca2+ plays critical roles in the development of diseases, whereas existing various Ca regulation methods have been greatly restricted in their clinical applications due to their high toxicity and inefficiency. To solve this issue, with the help of Ca overexpressed tumor drug resistance model, the phytic acid (PA)-modified CeO2 nano-inhibitors have been rationally designed as an unprecedentedly safe and efficient Ca2+ inhibitor to successfully reverse tumor drug resistance through Ca2+ negative regulation strategy. Using doxorubicin (Dox) as a model chemotherapeutic drug, the Ca2+ nano-inhibitors efficiently deprived intracellular excessive free Ca2+, suppressed P-glycoprotein (P-gp) expression and significantly enhanced intracellular drug accumulation in Dox-resistant tumor cells. This Ca2+ negative regulation strategy improved the intratumoral Dox concentration by a factor of 12.4 and nearly eradicated tumors without obvious adverse effects. Besides, nanocerias as pH-regulated nanozyme greatly alleviated the adverse effects of chemotherapeutic drug on normal cells/organs and substantially improved survivals of mice. We anticipate that this safe and effective Ca2+ negative regulation strategy has potentials to conquer the pitfalls of traditional Ca inhibitors, improve therapeutic efficacy of common chemotherapeutic drugs and serves as a facile and effective treatment platform of other Ca2+ associated diseases.

Keywords: nanozyme, Ca2+ nano-inhibitor , nanoceria, tumor drug resistance, phytic acid

References(51)

1

Hirabayashi, Y.; Kwon, S. K.; Paek, H.; Pernice, W. M.; Paul, M. A.; Lee, J.; Erfani, P.; Raczkowski, A.; Petrey, D. S.; Pon, L. A. et al. ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 2017, 358, 623–630.

2

Clapham, D. E. Calcium signaling. Cell 2007, 131, 1047–1058.

3

Trebak, M.; Kinet, J. P. Calcium signalling in T cells. Nat. Rev. Immunol. 2019, 19, 154–169.

4

Monteith, G. R.; Prevarskaya, N.; Roberts-Thomson, S. J. The calcium-cancer signalling nexus. Nat. Rev. Cancer 2017, 17, 373–380.

5

Guan, Q.; Zhou, L. L.; Lv, F. H.; Li, W. Y.; Li, Y. A.; Dong, Y. B. A glycosylated covalent organic framework equipped with BODIPY and CaCO3 for synergistic tumor therapy. Angew. Chem., Int. Ed. 2020, 59, 18042–18047.

6

Bao, Q. Q.; Hu, P.; Ren, W. W.; Guo, Y. D.; Shi, J. L. Tumor cell dissociation removes malignant bladder tumors. Chem 2020, 6, 2283–2299.

7

Saurav, S.; Tanwar, J.; Ahuja, K.; Motiani, R. K. Dysregulation of host cell calcium signaling during viral infections: Emerging paradigm with high clinical relevance. Mol. Aspects Med. 2021, 81, 101004.

8

Marchi, S.; Giorgi, C.; Galluzzi, L.; Pinton, P. Ca2+ fluxes and cancer. Mol. Cell 2020, 78, 1055–1069.

9

Wang, Z. Q.; An, H. W.; Hou, D. Y.; Wang, M. D.; Zeng, X. Z.; Zheng, R.; Wang, L.; Wang, K. L.; Wang, H.; Xu, W. H. Addressable peptide self-assembly on the cancer cell membrane for sensitizing chemotherapy of renal cell carcinoma. Adv. Mater. 2019, 31, 1807175.

10

Waghray, D.; Zhang, Q. H. Inhibit or evade multidrug resistance P-glycoprotein in cancer treatment. J. Med. Chem. 2018, 61, 5108–5121.

11

Tuguntaev, R. G.; Chen, S. Z.; Eltahan, A. S.; Mozhi, A.; Jin, S. B.; Zhang, J. C.; Li, C.; Wang, P. C.; Liang, X. J. P-gp inhibition and mitochondrial impairment by dual-functional nanostructure based on Vitamin E derivatives to overcome multidrug resistance. ACS Appl. Mater. Interfaces 2017, 9, 16900–16912.

12

Chen, X. K.; Zhang, X. D.; Guo, Y. X.; Zhu, Y. X.; Liu, X. Y.; Chen, Z.; Wu, F. G. Smart supramolecular “Trojan Horse”-inspired nanogels for realizing light-triggered nuclear drug influx in drug-resistant cancer cells. Adv. Funct. Mater. 2019, 29, 1807772.

13

Chen, Z. W.; Wang, Z. J.; Gu, Z. Bioinspired and biomimetic nanomedicines. Acc. Chem. Res. 2019, 52, 1255–1264.

14

Hu, Z. T.; Ding, Y. Cerium oxide nanoparticles-mediated cascade catalytic chemo-photo tumor combination therapy. Nano Res. 2022, 15, 333–345.

15

Jiang, S. X.; Ge, Z. L.; Mou, S.; Yan, H.; Fan, C. H. Designer DNA nanostructures for therapeutics. Chem 2021, 7, 1156–1179.

16

Wu, H. Y.; Zhong, D.; Zhang, Z. J.; Li, Y. C.; Zhang, X.; Li, Y. K.; Zhang, Z. Z.; Xu, X. H.; Yang, J.; Gu, Z. W. Bioinspired artificial tobacco mosaic virus with combined oncolytic properties to completely destroy multidrug-resistant cancer. Adv. Mater. 2020, 32, 1904958.

17

Chu, X.; Jiang, X. W.; Liu, Y. Y.; Zhai, S. J.; Jiang, Y. Q.; Chen, Y.; Wu, J.; Wang, Y.; Wu, Y. L.; Tao, X. F. et al. Nitric oxide modulating calcium store for Ca2+-initiated cancer therapy. Adv. Funct. Mater. 2021, 31, 2008507.

18

Wang, S.; Liu, X.; Chen, S. Z.; Liu, Z. R.; Zhang, X. D.; Liang, X. J.; Li, L. L. Regulation of Ca2+ signaling for drug-resistant breast cancer therapy with mesoporous silica nanocapsule encapsulated doxorubicin/siRNA cocktail. ACS Nano 2019, 13, 274–283.

19

Gao, P.; Chen, Y. Y.; Pan, W.; Li, N.; Liu, Z.; Tang, B. Antitumor agents based on metal-organic frameworks. Angew. Chem., Int. Ed. 2021, 60, 16763–16776.

20

Zhang, M.; Song, R. X.; Liu, Y. Y.; Yi, Z. G.; Meng, X. F.; Zhang, J. W.; Tang, Z. M.; Yao, Z. W.; Liu, Y.; Liu, X. G. et al. Calcium-overload-mediated tumor therapy by calcium peroxide nanoparticles. Chem 2019, 5, 2171–2182.

21

Shen, S. Y.; Xu, X.; Lin, S. Q.; Zhang, Y.; Liu, H. Y.; Zhang, C.; Mo, R. A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nat. Nanotechnol. 2021, 16, 104–113.

22

Liu, J. J.; Zhu, C. Y.; Xu, L. H.; Wang, D. Y.; Liu, W.; Zhang, K. X.; Zhang, Z. Z.; Shi, J. L. Nanoenabled intracellular calcium bursting for safe and efficient reversal of drug resistance in tumor cells. Nano Lett. 2020, 20, 8102–8111.

23

Zheng, P.; Ding, B. B.; Shi, R.; Jiang, Z. Y.; Xu, W. G.; Li, G.; Ding, J. X.; Chen, X. S. A multichannel Ca2+ nanomodulator for multilevel mitochondrial destruction-mediated cancer therapy. Adv. Mater. 2021, 33, 2007426.

24

Li, Y. L.; Zhou, S.; Song, H. Z.; Yu, T.; Zheng, X. D.; Chu, Q. CaCO3 nanoparticles incorporated with KAE to enable amplified calcium overload cancer therapy. Biomaterials 2021, 277, 121080.

25

Bushinsky, D. A.; Monk, R. D. Electrolyte quintet: Calcium. Lancet 1998, 352, 306–311.

26

Tang, N.; Li, H. H.; Zhang, L. H.; Zhang, X. Y.; Chen, Y. N.; Shou, H.; Feng, S. S.; Chen, X. H.; Luo, Y.; Tang, R. K. et al. A macromolecular drug for cancer therapy via extracellular calcification. Angew. Chem., Int. Ed. 2021, 60, 6509–6517.

27

Ma, X.; Cai, Y. F.; He, D. X.; Zou, C.; Zhang, P.; Lo, C. Y.; Xu, Z. Y.; Chan, F. L.; Yu, S.; Chen, Y. et al. Transient receptor potential channel TRPC5 is essential for P-glycoprotein induction in drug-resistant cancer cells. Proc. Natl. Acad. Sci. USA 2012, 109, 16282–16287.

28

Tsuruo, T.; Iida, H.; Kawabata, H.; Tsukagoshi, S.; Sakurai, Y. High calcium content of pleiotropic drug-resistant P388 and K562 leukemia and Chinese hamster ovary cells. Cancer Res. 1984, 44, 5095–5099.

29

Nygren, P.; Larsson, R.; Gruber, A.; Peterson, C.; Bergh, J. Doxorubicin selected multidrug-resistant small cell lung cancer cell lines characterised by elevated cytoplasmic Ca2+ and resistance modulation by verapamil in absence of P-glycoprotein overexpression. Br. J. Cancer 1991, 64, 1011–1018.

30

Moslehi, J. J. Cardiovascular toxic effects of targeted cancer therapies. N. Engl. J. Med. 2016, 375, 1457–1467.

31

Coker, R. J.; James, N. D.; Stewart, J. S. W. Hepatic toxicity of liposomal encapsulated doxorubicin. Lancet 1993, 341, 756.

32

Tian, Z. M.; Li, X. H.; Ma, Y. Y.; Chen, T.; Xu, D. H.; Wang, B. C.; Qu, Y. Q.; Gao, Y. Quantitatively intrinsic biomimetic catalytic activity of nanocerias as radical scavengers and their ability against H2O2 and doxorubicin-induced oxidative stress. ACS Appl. Mater. Interfaces 2017, 9, 23342–23352.

33

Wang, C. P.; Li, L.; Zhang, S.; Yan, Y.; Huang, Q.; Cai, X. P.; Xiao, J. R.; Cheng, Y. Y. Carrier-free platinum nanomedicine for targeted cancer therapy. Small 2020, 16, 2004829.

34

Kim, J. S.; Jang, S. W.; Son, M.; Kim, B. M.; Kang, M. J. Enteric-coated tablet of risedronate sodium in combination with phytic acid, a natural chelating agent, for improved oral bioavailability. Eur. J. Pharm. Sci. 2016, 82, 45–51.

35

Cai, K.; Sun, F. X.; Liang, X. Q.; Liu, C.; Zhao, N.; Zou, X. Q.; Zhu, G. S. An acid-stable hexaphosphate ester based metal-organic framework and its polymer composite as proton exchange membrane. J. Mater. Chem. A 2017, 5, 12943–12950.

36

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

37

Karakoti, A.; Singh, S.; Dowding, J. M.; Seal, S.; Self, W. T. Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 2010, 39, 4422–4432.

38

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

39

Li, Y. Y.; He, X.; Yin, J. J.; Ma, Y. H.; Zhang, P.; Li, J. Y.; Ding, Y. Y.; Zhang, J.; Zhao, Y. L.; Chai, Z. F. et al. Acquired superoxide-scavenging ability of ceria nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 1832–1835.

40

Soh, M.; Kang, D. W.; Jeong, H. G.; Kim, D.; Kim, D. Y.; Yang, W.; Song, C.; Baik, S.; Choi, I. Y.; Ki, S. K. et al. Ceria-zirconia nanoparticles as an enhanced multi-antioxidant for sepsis treatment. Angew. Chem., Int. Ed. 2017, 56, 11399–11403.

41

Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.

42

Weng, Q. J.; Sun, H.; Fang, C. Y.; Xia, F.; Liao, H. W.; Lee, J.; Wang, J. C.; Xie, A.; Ren, J. F.; Guo, X. et al. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat. Commun. 2021, 12, 1436.

43

Ren, Q. J.; Sun, S.; Zhang, X. D. Redox-active nanoparticles for inflammatory bowel disease. Nano Res. 2021, 14, 2535–2557.

44

Li, J.; Zhang, Z. Y.; Tian, Z. M.; Zhou, X. M.; Zheng, Z. P.; Ma, Y. Y.; Qu, Y. Q. Low pressure induced porous nanorods of ceria with high reducibility and large oxygen storage capacity: Synthesis and catalytic applications. J. Mater. Chem. A 2014, 2, 16459–16466.

45

Barron, L.; Nesterenko, P. N.; Diamond, D.; O'Toole, M.; Lau, K. T.; Paull, B. Low pressure ion chromatography with a low cost paired emitter-detector diode based detector for the determination of alkaline earth metals in water samples. Anal. Chim. Acta 2006, 577, 32–37.

46

Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

47

Sang, Y. J.; Cao, F. F.; Li, W.; Zhang, L.; You, Y. W.; Deng, Q. Q.; Dong, K.; Ren, J. S.; Qu, X. G. Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy. J. Am. Chem. Soc. 2020, 142, 5177–5183.

48

Tian, Z. M.; Yang, K. L.; Yao, T. Z.; Li, X. H.; Ma, Y. Y.; Qu, C. Y.; Qu, X. L.; Xu, Y. J.; Guo, Y. H.; Qu, Y. Q. Catalytically selective chemotherapy from tumor-metabolic generated lactic acid. Small 2019, 15, 1903746.

49

Zhu, H. M.; Cao, G. D.; Fu, Y. K.; Fang, C.; Chu, Q.; Li, X.; Wu, Y. L.; Han, G. R. ATP-responsive hollow nanocapsules for DOX/GOx delivery to enable tumor inhibition with suppressed P-glycoprotein. Nano Res. 2021, 14, 222–231.

50

Tai, W. Y.; Gao, X. H. Ribonucleoprotein: A biomimetic platform for targeted siRNA delivery. Adv. Funct. Mater. 2019, 29, 1902221.

51

Liu, X.; Qiu, Y.; Liu, Y. H.; Huang, N.; Hua, C.; Wang, Q. Q.; Wu, Z. Q.; Lu, J. X.; Song, P.; Xu, J. et al. Citronellal ameliorates doxorubicin-induced hepatotoxicity via antioxidative stress, antiapoptosis, and proangiogenesis in rats. J. Biochem. Mol. Toxicol. 2021, 35, e22639.

File
12274_2022_4069_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright

Publication history

Received: 26 October 2021
Revised: 03 December 2021
Accepted: 13 December 2021
Published: 29 January 2022
Issue date: May 2022

Copyright

© Tsinghua University Press 2022
Return