Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Cation-π interaction is an electrostatic interaction between a cation and an electron-rich arene. It plays an essential role in many biological systems as a vital driving force for protein folding, stability, and receptor-ligand interaction/recognition. To date, the discovery of most cation-π interactions in proteins relies on the statistical analyses of available three-dimensional (3D) protein structures and corresponding computational calculations. However, their experimental verification and quantification remain sparse at the molecular level, mainly due to the limited methods to dynamically measure such a weak non-covalent interaction in proteins. Here, we use atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to measure the stability of protein neutrophil gelatinase-associated lipocalin (also known as NGAL, siderocalin, lipocalin 2) that can bind iron through the cation-π interactions between its three cationic residues and the iron-binding tri-catechols. Based on a site-specific cysteine engineering and anchoring method, we first characterized the stability and unfolding pathways of apo-NGAL. Then, the same NGAL but bound with the iron-catechol complexes through the cation-π interactions as a holo-form was characterized. AFM measurements demonstrated stronger stabilities and kinetics of the holo-NGAL from two pulling sites, F122 and F133. Here, NGAL is stretched from the designed cysteine close to the cationic residues for a maximum unfolding effect. Thus, our work demonstrates high-precision detection of the weak cation-π interaction in NGAL.
Ma, J. C.; Dougherty, D. A. The cation-π interaction. Chem. Rev. 1997, 97, 1303–1324.
Kumar, K.; Woo, S. M.; Siu, T.; Cortopassi, W. A.; Duarte, F.; Paton, R. S. Cation-π interactions in protein-ligand binding: Theory and data-mining reveal different roles for lysine and arginine. Chem. Sci. 2018, 9, 2655–2665.
Mahadevi, A. S.; Sastry, G. N. Cation-π interaction: Its role and relevance in chemistry, biology, and material science. Chem. Rev. 2013, 113, 2100–2138.
Shigedomi, K.; Osada, S.; Jelokhani-Niaraki, M.; Kodama, H. Systematic design and validation of ion channel stabilization of amphipathic α-helical peptides incorporating tryptophan residues. ACS Omega 2021, 6, 723–732.
Dougherty, D. A. The cation-π interaction. Acc. Chem. Res. 2013, 46, 885–893.
Waheed, Q.; Khan, H. M.; He, T.; Roberts, M.; Gershenson, A.; Reuter, N. Interfacial aromatics mediating cation-π interactions with choline-containing lipids can contribute as much to peripheral protein affinity for membranes as aromatics inserted below the phosphates. J. Phys. Chem. Lett. 2019, 10, 3972–3977.
Wang, Q.; Li, R.; Ouyang, X.; Wang, G. J. A novel indole-based conjugated microporous polymer for highly effective removal of heavy metals from aqueous solution via double cation-π interactions. RSC Adv. 2019, 9, 40531–40535.
Crowley, P. B.; Golovin, A. Cation-π interactions in protein-protein interfaces. Proteins: Struct., Funct. Bioinformatics 2005, 59, 231–239.
Dougherty, D. A.; Stauffer, D. A. Acetylcholine binding by a synthetic receptor: Implications for biological recognition. Science 1990, 250, 1558–1560.
Zheng, W. W.; Dignon, G. L.; Jovic, N.; Xu, X. C.; Regy, R. M.; Fawzi, N. L.; Kim, Y. C.; Best, R. B.; Mittal, J. Molecular details of protein condensates probed by microsecond long atomistic simulations. J. Phys. Chem. B 2020, 124, 11671–11679.
Singh, V. B. Spectroscopic signatures and the cation-π interaction in conformational preferences of the neurotransmitter dopamine in aqueous solution. ACS Chem. Neurosci. 2021, 12, 613–625.
Boknevitz, K.; Darrigan, C.; Chrostowska, A.; Liu, S. Y. Cation-π binding ability of BN indole. Chem. Commun. 2020, 56, 3749–3752.
Gebbie, M. A.; Wei, W.; Schrader, A. M.; Cristiani, T. R.; Dobbs, H. A.; Idso, M.; Chmelka, B. F.; Waite, J. H.; Israelachvili, J. N. Tuning underwater adhesion with cation-π interactions. Nat. Chem. 2017, 9, 473–479.
Prampolini, G.; d'Ischia, M.; Ferretti, A. The phenoxyl group-modulated interplay of cation-π and σ-type interactions in the alkali metal series. Phys. Chem. Chem. Phys. 2020, 22, 27105–27120.
Pinheiro, S.; Soteras, I.; Gelpí, J. L.; Dehez, F.; Chipot, C.; Luque, F. J.; Curutchet, C. Structural and energetic study of cation-π-cation interactions in proteins. Phys. Chem. Chem. Phys. 2017, 19, 9849–9861.
Rivas-Pardo, J. A.; Li, Y.; Mártonfalvi, Z.; Tapia-Rojo, R.; Unger, A.; Fernández-Trasancos, Á.; Herrero-Galán, E.; Velázquez-Carreras, D.; Fernández, J. M.; Linke, W. A. et al. A HaloTag-TEV genetic cassette for mechanical phenotyping of proteins from tissues. Nat. Commun. 2020, 11, 2060.
Le, S. M.; Yu, M.; Yan, J. Direct single-molecule quantification reveals unexpectedly high mechanical stability of vinculin-talin/α-catenin linkages. Sci. Adv. 2019, 5, eaav2720.
Hoffer, N. Q.; Neupane, K.; Pyo, A. G. T.; Woodside, M. T. Measuring the average shape of transition paths during the folding of a single biological molecule. Proc. Natl. Acad. Sci. USA 2019, 116, 8125–8130.
Dahal, N.; Nowitzke, J.; Eis, A.; Popa, I. Binding-induced stabilization measured on the same molecular protein substrate using single-molecule magnetic tweezers and heterocovalent attachments. J. Phys. Chem. B 2020, 124, 3283–3290.
Wolny, M.; Batchelor, M.; Bartlett, G. J.; Baker, E. G.; Kurzawa, M.; Knight, P. J.; Dougan, L.; Woolfson, D. N.; Paci, E.; Peckham, M. Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability. Sci. Rep. 2017, 7, 44341.
Zhang, X. X.; Chen, J. L.; Li, E. C.; Hu, C. G.; Luo, S. Z.; He, C. Z. Ultrahigh adhesion force between silica-binding peptide SB7 and glass substrate studied by single-molecule force spectroscopy and molecular dynamic simulation. Front. Chem. 2020, 8, 600918.
Li, J. Q.; Wijeratne, S. S.; Nelson, T. E.; Lin, T. C.; He, X.; Feng, X. W.; Nikoloutsos, N.; Fang, R.; Jiang, K.; Lian, I. et al. Dependence of membrane tether strength on substrate rigidity probed by single-cell force spectroscopy. J. Phys. Chem. Lett. 2020, 11, 4173–4178.
Paul, D.; Roy, A.; Nandy, A.; Datta, B.; Borar, P.; Pal, S. K.; Senapati, D.; Rakshit, T. Identification of biomarker hyaluronan on colon cancer extracellular vesicles using correlative afm and spectroscopy. J. Phys. Chem. Lett. 2020, 11, 5569–5576.
Brückner, S.; Schubert, R.; Kraushaar, T.; Hartmann, R.; Hoffmann, D.; Jelli, E.; Drescher, K.; Müller, D. J.; Essen, L. O.; Mösch, H. U. Kin discrimination in social yeast is mediated by cell surface receptors of the Flo11 adhesin family. Elife 2020, 9, e55587.
Schönfelder, J.; Alonso-Caballero, A.; De Sancho, D.; Perez-Jimenez, R. The life of proteins under mechanical force. Chem. Soc. Rev. 2018, 47, 3558–3573.
Xiang, W. T.; Li, Z. D.; Xu, C. Q.; Li, J.; Zhang, W. K.; Xu, H. P. Quantifying the bonding strength of gold-chalcogen bonds in block copolymer systems. Chem.—Asian J. 2019, 14, 1481–1486.
Zhao, P.; Xu, C. Q.; Sun, C. X.; Xia, J. H.; Sun, L.; Li, J.; Xu, H. P. Exploring the difference of bonding strength between silver(I) and chalcogenides in block copolymer systems. Polym. Chem. 2020, 11, 7087–7093.
Hoffmann, T.; Tych, K. M.; Crosskey, T.; Schiffrin, B.; Brockwell, D. J.; Dougan, L. Rapid and robust polyprotein production facilitates single-molecule mechanical characterization of β-barrel assembly machinery polypeptide transport associated domains. ACS Nano 2015, 9, 8811–8821.
Brockwell, D. J.; Paci, E.; Zinober, R. C.; Beddard, G. S.; Olmsted, P. D.; Smith, D. A.; Perham, R. N.; Radford, S. E. Pulling geometry defines the mechanical resistance of a β-sheet protein. Nat. Struct. Mol. Biol. 2003, 10, 731–737.
Müller, D. J.; Dumitru, A. C.; Lo Giudice, C.; Gaub, H. E.; Hinterdorfer, P.; Hummer, G.; De Yoreo, J. J.; Dufrêne, Y. F.; Alsteens, D. Atomic force microscopy-based force spectroscopy and multiparametric imaging of biomolecular and cellular systems. Chem. Rev. 2021, 121, 11701–11725.
Scholl, Z. N.; Li, Q.; Yang, W. T.; Marszalek, P. E. Single-molecule force spectroscopy reveals the calcium dependence of the alternative conformations in the native state of β, γ-crystallin protein. J. Biol. Chem. 2016, 291, 18263–18275.
Rico, F.; Russek, A.; González, L.; Grubmüller, H.; Scheuring, S. Heterogeneous and rate-dependent streptavidin-biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations. Proc. Natl. Acad. Sci. USA 2019, 116, 6594–6601.
Zheng, P.; Li, H. B. Highly covalent ferric-thiolate bonds exhibit surprisingly low mechanical stability. J. Am. Chem. Soc. 2011, 133, 6791–6798.
Yuan, G. D.; Liu, H. X.; Ma, Q.; Li, X.; Nie, J. Y.; Zuo, J. L.; Zheng, P. Single-molecule force spectroscopy reveals that iron-ligand bonds modulate proteins in different modes. J. Phys. Chem. Lett. 2019, 10, 5428–5433.
Song, G. B.; Ding, X.; Liu, H. X.; Yuan, G. D.; Tian, F.; Shi, S. C.; Yang, Y.; Li, G. Q.; Zheng, P. Single-molecule force spectroscopy reveals that the Fe-N bond enables multiple rupture pathways of the 2Fe2S cluster in a MitoNEET monomer. Anal. Chem. 2020, 92, 14783–14789.
Tunn, I.; de Léon, A. S.; Blank, K. G.; Harrington, M. J. Tuning coiled coil stability with histidine-metal coordination. Nanoscale 2018, 10, 22725–22729.
Infante, E.; Stannard, A.; Board, S. J.; Rico-Lastres, P.; Rostkova, E.; Beedle, A. E. M.; Lezamiz, A.; Wang, Y. J.; Breen, S. G.; Panagaki, F. et al. The mechanical stability of proteins regulates their translocation rate into the cell nucleus. Nat. Phys. 2019, 15, 973–981.
Oh, Y. J.; Köhler, M.; Lee, Y.; Mishra, S.; Won Park, J.; Hinterdorfer, P. Label-free probing of binding affinity using topography and recognition imaging. Biophys. J. 2020, 118, 174a–175a.
Fu, L. L.; Wang, H.; Li, H. B. Harvesting mechanical work from folding-based protein engines: From single-molecule mechanochemical cycles to macroscopic devices. CCS Chem. 2019, 1, 138–147.
Perales-Calvo, J.; Lezamiz, A.; Garcia-Manyes, S. The mechanochemistry of a structural zinc finger. J. Phys. Chem. Lett. 2015, 6, 3335–3340.
Freitas, F. C.; de Oliveira, R. J. Extension-dependent drift velocity and diffusion (drdiff) directly reconstructs the folding free energy landscape of atomic force microscopy experiments. J. Phys. Chem. Lett. 2020, 11, 800–807.
Herman, K.; Lekka, M.; Ptak, A. Unbinding kinetics of syndecans by single-molecule force spectroscopy. J. Phys. Chem. Lett. 2018, 9, 1509–1515.
Stigler, J.; Rief, M. Calcium-dependent folding of single calmodulin molecules. Proc. Natl. Acad. Sci. USA 2012, 109, 17814–17819.
Pelz, B.; Žoldák, G.; Zeller, F.; Zacharias, M.; Rief, M. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy. Nat. Commun. 2016, 7, 10848.
Gunnoo, M.; Cazade, P. A.; Orlowski, A.; Chwastyk, M.; Liu, H. P.; Ta, D. T.; Cieplak, M.; Nash, M.; Thompson, D. Steered molecular dynamics simulations reveal the role of Ca2+ in regulating mechanostability of cellulose-binding proteins. Phys. Chem. Chem. Phys. 2018, 20, 22674–22680.
Zheng, P.; Cao, Y.; Bu, T. J.; Straus, S. K.; Li, H. B. Single molecule force spectroscopy reveals that electrostatic interactions affect the mechanical stability of proteins. Biophys. J. 2011, 100, 1534–1541.
Muddassir, M.; Manna, B.; Singh, P.; Singh, S.; Kumar, R.; Ghosh, A.; Sharma, D. Single-molecule force-unfolding of titin I27 reveals a correlation between the size of the surrounding anions and its mechanical stability. Chem. Commun. 2018, 54, 9635–9638.
Yang, B.; Liu, Z. W.; Liu, H. P.; Nash, M. A. Next generation methods for single-molecule force spectroscopy on polyproteins and receptor-ligand complexes. Front. Mol. Biosci. 2020, 7, 85.
Stahl, S. W.; Nash, M. A.; Fried, D. B.; Slutzki, M.; Barak, Y.; Bayer, E. A.; Gaub, H. E. Single-molecule dissection of the high-affinity cohesin-dockerin complex. Proc. Natl. Acad. Sci. USA 2012, 109, 20431–20436.
Durner, E.; Ott, W.; Nash, M. A.; Gaub, H. E. Post-translational sortase-mediated attachment of high-strength force spectroscopy handles. ACS Omega 2017, 2, 3064–3069.
Deng, Y. B.; Wu, T.; Wang, M. D.; Shi, S. C.; Yuan, G. D.; Li, X.; Chong, H. C.; Wu, B.; Zheng, P. Enzymatic biosynthesis and immobilization of polyprotein verified at the single-molecule level. Nat. Commun. 2019, 10, 2775.
Dietz, H.; Rief, M. Protein structure by mechanical triangulation. Proc. Natl. Acad. Sci. USA 2006, 103, 1244–1247.
Becke, T. D.; Ness, S.; Kaufmann, B. K.; Hartmann, B.; Schilling, A. F.; Sudhop, S.; Hilleringmann, M.; Clausen-Schaumann, H. Pilus-1 backbone protein RrgB of streptococcus pneumoniae binds collagen i in a force-dependent way. ACS Nano 2019, 13, 7155–7165.
Xing, H.; Li, Z. D.; Wang, W. B.; Liu, P. R.; Liu, J.; Song, Y.; Wu, Z. L.; Zhang, W. K.; Huang, F. H. Mechanochemistry of an interlocked poly[2]catenane: From single molecule to bulk gel. CCS Chem. 2020, 2, 513–523.
Bao, Y.; Luo, Z. L.; Cui, S. X. Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications for advanced polymer materials. Chem. Soc. Rev. 2020, 49, 2799–2827.
Synakewicz, M.; Bauer, D.; Rief, M.; Itzhaki, L. S. Bioorthogonal protein-DNA conjugation methods for force spectroscopy. Sci. Rep. 2019, 9, 13820.
Hu, X. L.; Zhao, X. Q.; He, B. Z.; Zhao, Z.; Zheng, Z.; Zhang, P. F.; Shi, X. J.; Kwok, R. T. K.; Lam, J. W. Y.; Qin, A. J. et al. A simple approach to bioconjugation at diverse levels: Metal-free click reactions of activated alkynes with native groups of biotargets without prefunctionalization. Research 2018, 2018, 3152870.
Gasymov, O. K.; Abduragimov, A. R.; Glasgow, B. J. Cation-π interactions in lipocalins: Structural and functional implications. Biochemistry 2012, 51, 2991–3002.
Bao, G. H.; Clifton, M.; Hoette, T. M.; Mori, K.; Deng, S. X.; Qiu, A. D.; Viltard, M.; Williams, D.; Paragas, N.; Leete, T. et al. Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat. Chem. Biol 2010, 6, 602–609.
Goetz, D. H.; Holmes, M. A.; Borregaard, N.; Bluhm, M. E.; Raymond, K. N.; Strong, R. K. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 2002, 10, 1033–1043.
Hutter, J. L.; Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 1993, 64, 1868–1873.
Marko, J. F.; Siggia, E. D. Stretching DNA. Macromolecules 1995, 28, 8759–8770.
Ainavarapu, S. R. K.; Brujić, J.; Huang, H. H.; Wiita, A. P.; Lu, H.; Li, L.; Walther, K. A.; Carrion-Vazquez, M.; Li, H. B.; Fernandez, J. M. Contour length and refolding rate of a small protein controlled by engineered disulfide bonds. Biophys. J. 2007, 92, 225–233.
Zheng, P.; Cao, Y.; Li, H. B. Facile method of constructing polyproteins for single-molecule force spectroscopy studies. Langmuir 2011, 27, 5713–5718.
Tian, F.; Tong, B.; Sun, L.; Shi, S. C.; Zheng, B.; Wang, Z. B.; Dong, X. C.; Zheng, P. N501y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. Elife 2021, 10, e69091.
LeBlanc, M. A.; Fink, M. R.; Perkins, T. T.; Sousa, M. C. Type III secretion system effector proteins are mechanically labile. Proc. Natl. Acad. Sci. USA 2021, 118, e2019566118.
Cao, Y.; Lam, C.; Wang, M. J.; Li, H. B. Nonmechanical protein can have significant mechanical stability. Angew. Chem., Int. Ed. 2006, 45, 642–645.
Dietz, H.; Bertz, M.; Schlierf, M.; Berkemeier, F.; Bornschlogl, T.; Junker, J. P.; Rief, M. Cysteine engineering of polyproteins for single-molecule force spectroscopy. Nat. Protoc. 2006, 1, 80–84.
Zheng, P.; Chou, C. C.; Guo, Y.; Wang, Y. Y.; Li, H. B. Single molecule force spectroscopy reveals the molecular mechanical anisotropy of the FeS4 metal center in rubredoxin. J. Am. Chem. Soc. 2013, 135, 17783–17792.