Journal Home > Volume 15 , Issue 5

Cation-π interaction is an electrostatic interaction between a cation and an electron-rich arene. It plays an essential role in many biological systems as a vital driving force for protein folding, stability, and receptor-ligand interaction/recognition. To date, the discovery of most cation-π interactions in proteins relies on the statistical analyses of available three-dimensional (3D) protein structures and corresponding computational calculations. However, their experimental verification and quantification remain sparse at the molecular level, mainly due to the limited methods to dynamically measure such a weak non-covalent interaction in proteins. Here, we use atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to measure the stability of protein neutrophil gelatinase-associated lipocalin (also known as NGAL, siderocalin, lipocalin 2) that can bind iron through the cation-π interactions between its three cationic residues and the iron-binding tri-catechols. Based on a site-specific cysteine engineering and anchoring method, we first characterized the stability and unfolding pathways of apo-NGAL. Then, the same NGAL but bound with the iron-catechol complexes through the cation-π interactions as a holo-form was characterized. AFM measurements demonstrated stronger stabilities and kinetics of the holo-NGAL from two pulling sites, F122 and F133. Here, NGAL is stretched from the designed cysteine close to the cationic residues for a maximum unfolding effect. Thus, our work demonstrates high-precision detection of the weak cation-π interaction in NGAL.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Detection of weak non-covalent cation-π interactions in NGAL by single-molecule force spectroscopy

Show Author's information Jingyuan NieYibing DengFang TianShengchao ShiPeng Zheng( )
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China

Abstract

Cation-π interaction is an electrostatic interaction between a cation and an electron-rich arene. It plays an essential role in many biological systems as a vital driving force for protein folding, stability, and receptor-ligand interaction/recognition. To date, the discovery of most cation-π interactions in proteins relies on the statistical analyses of available three-dimensional (3D) protein structures and corresponding computational calculations. However, their experimental verification and quantification remain sparse at the molecular level, mainly due to the limited methods to dynamically measure such a weak non-covalent interaction in proteins. Here, we use atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to measure the stability of protein neutrophil gelatinase-associated lipocalin (also known as NGAL, siderocalin, lipocalin 2) that can bind iron through the cation-π interactions between its three cationic residues and the iron-binding tri-catechols. Based on a site-specific cysteine engineering and anchoring method, we first characterized the stability and unfolding pathways of apo-NGAL. Then, the same NGAL but bound with the iron-catechol complexes through the cation-π interactions as a holo-form was characterized. AFM measurements demonstrated stronger stabilities and kinetics of the holo-NGAL from two pulling sites, F122 and F133. Here, NGAL is stretched from the designed cysteine close to the cationic residues for a maximum unfolding effect. Thus, our work demonstrates high-precision detection of the weak cation-π interaction in NGAL.

Keywords: atomic force microscopy (AFM), single-molecule force spectroscopy, neutrophil gelatinase-associated lipocalin (NGAL), cation-π interaction

References(70)

1

Ma, J. C.; Dougherty, D. A. The cation-π interaction. Chem. Rev. 1997, 97, 1303–1324.

2

Kumar, K.; Woo, S. M.; Siu, T.; Cortopassi, W. A.; Duarte, F.; Paton, R. S. Cation-π interactions in protein-ligand binding: Theory and data-mining reveal different roles for lysine and arginine. Chem. Sci. 2018, 9, 2655–2665.

3

Mahadevi, A. S.; Sastry, G. N. Cation-π interaction: Its role and relevance in chemistry, biology, and material science. Chem. Rev. 2013, 113, 2100–2138.

4

Shigedomi, K.; Osada, S.; Jelokhani-Niaraki, M.; Kodama, H. Systematic design and validation of ion channel stabilization of amphipathic α-helical peptides incorporating tryptophan residues. ACS Omega 2021, 6, 723–732.

5

Dougherty, D. A. The cation-π interaction. Acc. Chem. Res. 2013, 46, 885–893.

6

Waheed, Q.; Khan, H. M.; He, T.; Roberts, M.; Gershenson, A.; Reuter, N. Interfacial aromatics mediating cation-π interactions with choline-containing lipids can contribute as much to peripheral protein affinity for membranes as aromatics inserted below the phosphates. J. Phys. Chem. Lett. 2019, 10, 3972–3977.

7

Wang, Q.; Li, R.; Ouyang, X.; Wang, G. J. A novel indole-based conjugated microporous polymer for highly effective removal of heavy metals from aqueous solution via double cation-π interactions. RSC Adv. 2019, 9, 40531–40535.

8

Crowley, P. B.; Golovin, A. Cation-π interactions in protein-protein interfaces. Proteins: Struct., Funct. Bioinformatics 2005, 59, 231–239.

9

Dougherty, D. A.; Stauffer, D. A. Acetylcholine binding by a synthetic receptor: Implications for biological recognition. Science 1990, 250, 1558–1560.

10

Zheng, W. W.; Dignon, G. L.; Jovic, N.; Xu, X. C.; Regy, R. M.; Fawzi, N. L.; Kim, Y. C.; Best, R. B.; Mittal, J. Molecular details of protein condensates probed by microsecond long atomistic simulations. J. Phys. Chem. B 2020, 124, 11671–11679.

11

Singh, V. B. Spectroscopic signatures and the cation-π interaction in conformational preferences of the neurotransmitter dopamine in aqueous solution. ACS Chem. Neurosci. 2021, 12, 613–625.

12

Boknevitz, K.; Darrigan, C.; Chrostowska, A.; Liu, S. Y. Cation-π binding ability of BN indole. Chem. Commun. 2020, 56, 3749–3752.

13

Gebbie, M. A.; Wei, W.; Schrader, A. M.; Cristiani, T. R.; Dobbs, H. A.; Idso, M.; Chmelka, B. F.; Waite, J. H.; Israelachvili, J. N. Tuning underwater adhesion with cation-π interactions. Nat. Chem. 2017, 9, 473–479.

14

Prampolini, G.; d'Ischia, M.; Ferretti, A. The phenoxyl group-modulated interplay of cation-π and σ-type interactions in the alkali metal series. Phys. Chem. Chem. Phys. 2020, 22, 27105–27120.

15

Pinheiro, S.; Soteras, I.; Gelpí, J. L.; Dehez, F.; Chipot, C.; Luque, F. J.; Curutchet, C. Structural and energetic study of cation-π-cation interactions in proteins. Phys. Chem. Chem. Phys. 2017, 19, 9849–9861.

16

Rivas-Pardo, J. A.; Li, Y.; Mártonfalvi, Z.; Tapia-Rojo, R.; Unger, A.; Fernández-Trasancos, Á.; Herrero-Galán, E.; Velázquez-Carreras, D.; Fernández, J. M.; Linke, W. A. et al. A HaloTag-TEV genetic cassette for mechanical phenotyping of proteins from tissues. Nat. Commun. 2020, 11, 2060.

17

Le, S. M.; Yu, M.; Yan, J. Direct single-molecule quantification reveals unexpectedly high mechanical stability of vinculin-talin/α-catenin linkages. Sci. Adv. 2019, 5, eaav2720.

18

Hoffer, N. Q.; Neupane, K.; Pyo, A. G. T.; Woodside, M. T. Measuring the average shape of transition paths during the folding of a single biological molecule. Proc. Natl. Acad. Sci. USA 2019, 116, 8125–8130.

19

Dahal, N.; Nowitzke, J.; Eis, A.; Popa, I. Binding-induced stabilization measured on the same molecular protein substrate using single-molecule magnetic tweezers and heterocovalent attachments. J. Phys. Chem. B 2020, 124, 3283–3290.

20

Wolny, M.; Batchelor, M.; Bartlett, G. J.; Baker, E. G.; Kurzawa, M.; Knight, P. J.; Dougan, L.; Woolfson, D. N.; Paci, E.; Peckham, M. Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability. Sci. Rep. 2017, 7, 44341.

21

Zhang, X. X.; Chen, J. L.; Li, E. C.; Hu, C. G.; Luo, S. Z.; He, C. Z. Ultrahigh adhesion force between silica-binding peptide SB7 and glass substrate studied by single-molecule force spectroscopy and molecular dynamic simulation. Front. Chem. 2020, 8, 600918.

22

Li, J. Q.; Wijeratne, S. S.; Nelson, T. E.; Lin, T. C.; He, X.; Feng, X. W.; Nikoloutsos, N.; Fang, R.; Jiang, K.; Lian, I. et al. Dependence of membrane tether strength on substrate rigidity probed by single-cell force spectroscopy. J. Phys. Chem. Lett. 2020, 11, 4173–4178.

23

Paul, D.; Roy, A.; Nandy, A.; Datta, B.; Borar, P.; Pal, S. K.; Senapati, D.; Rakshit, T. Identification of biomarker hyaluronan on colon cancer extracellular vesicles using correlative afm and spectroscopy. J. Phys. Chem. Lett. 2020, 11, 5569–5576.

24

Brückner, S.; Schubert, R.; Kraushaar, T.; Hartmann, R.; Hoffmann, D.; Jelli, E.; Drescher, K.; Müller, D. J.; Essen, L. O.; Mösch, H. U. Kin discrimination in social yeast is mediated by cell surface receptors of the Flo11 adhesin family. Elife 2020, 9, e55587.

25

Schönfelder, J.; Alonso-Caballero, A.; De Sancho, D.; Perez-Jimenez, R. The life of proteins under mechanical force. Chem. Soc. Rev. 2018, 47, 3558–3573.

26

Xiang, W. T.; Li, Z. D.; Xu, C. Q.; Li, J.; Zhang, W. K.; Xu, H. P. Quantifying the bonding strength of gold-chalcogen bonds in block copolymer systems. Chem.—Asian J. 2019, 14, 1481–1486.

27

Zhao, P.; Xu, C. Q.; Sun, C. X.; Xia, J. H.; Sun, L.; Li, J.; Xu, H. P. Exploring the difference of bonding strength between silver(I) and chalcogenides in block copolymer systems. Polym. Chem. 2020, 11, 7087–7093.

28

Hoffmann, T.; Tych, K. M.; Crosskey, T.; Schiffrin, B.; Brockwell, D. J.; Dougan, L. Rapid and robust polyprotein production facilitates single-molecule mechanical characterization of β-barrel assembly machinery polypeptide transport associated domains. ACS Nano 2015, 9, 8811–8821.

29

Brockwell, D. J.; Paci, E.; Zinober, R. C.; Beddard, G. S.; Olmsted, P. D.; Smith, D. A.; Perham, R. N.; Radford, S. E. Pulling geometry defines the mechanical resistance of a β-sheet protein. Nat. Struct. Mol. Biol. 2003, 10, 731–737.

30

Müller, D. J.; Dumitru, A. C.; Lo Giudice, C.; Gaub, H. E.; Hinterdorfer, P.; Hummer, G.; De Yoreo, J. J.; Dufrêne, Y. F.; Alsteens, D. Atomic force microscopy-based force spectroscopy and multiparametric imaging of biomolecular and cellular systems. Chem. Rev. 2021, 121, 11701–11725.

31

Scholl, Z. N.; Li, Q.; Yang, W. T.; Marszalek, P. E. Single-molecule force spectroscopy reveals the calcium dependence of the alternative conformations in the native state of β, γ-crystallin protein. J. Biol. Chem. 2016, 291, 18263–18275.

32

Rico, F.; Russek, A.; González, L.; Grubmüller, H.; Scheuring, S. Heterogeneous and rate-dependent streptavidin-biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations. Proc. Natl. Acad. Sci. USA 2019, 116, 6594–6601.

33

Zheng, P.; Li, H. B. Highly covalent ferric-thiolate bonds exhibit surprisingly low mechanical stability. J. Am. Chem. Soc. 2011, 133, 6791–6798.

34

Yuan, G. D.; Liu, H. X.; Ma, Q.; Li, X.; Nie, J. Y.; Zuo, J. L.; Zheng, P. Single-molecule force spectroscopy reveals that iron-ligand bonds modulate proteins in different modes. J. Phys. Chem. Lett. 2019, 10, 5428–5433.

35

Song, G. B.; Ding, X.; Liu, H. X.; Yuan, G. D.; Tian, F.; Shi, S. C.; Yang, Y.; Li, G. Q.; Zheng, P. Single-molecule force spectroscopy reveals that the Fe-N bond enables multiple rupture pathways of the 2Fe2S cluster in a MitoNEET monomer. Anal. Chem. 2020, 92, 14783–14789.

36

Tunn, I.; de Léon, A. S.; Blank, K. G.; Harrington, M. J. Tuning coiled coil stability with histidine-metal coordination. Nanoscale 2018, 10, 22725–22729.

37

Infante, E.; Stannard, A.; Board, S. J.; Rico-Lastres, P.; Rostkova, E.; Beedle, A. E. M.; Lezamiz, A.; Wang, Y. J.; Breen, S. G.; Panagaki, F. et al. The mechanical stability of proteins regulates their translocation rate into the cell nucleus. Nat. Phys. 2019, 15, 973–981.

38

Oh, Y. J.; Köhler, M.; Lee, Y.; Mishra, S.; Won Park, J.; Hinterdorfer, P. Label-free probing of binding affinity using topography and recognition imaging. Biophys. J. 2020, 118, 174a–175a.

39

Fu, L. L.; Wang, H.; Li, H. B. Harvesting mechanical work from folding-based protein engines: From single-molecule mechanochemical cycles to macroscopic devices. CCS Chem. 2019, 1, 138–147.

40

Perales-Calvo, J.; Lezamiz, A.; Garcia-Manyes, S. The mechanochemistry of a structural zinc finger. J. Phys. Chem. Lett. 2015, 6, 3335–3340.

41

Freitas, F. C.; de Oliveira, R. J. Extension-dependent drift velocity and diffusion (drdiff) directly reconstructs the folding free energy landscape of atomic force microscopy experiments. J. Phys. Chem. Lett. 2020, 11, 800–807.

42

Herman, K.; Lekka, M.; Ptak, A. Unbinding kinetics of syndecans by single-molecule force spectroscopy. J. Phys. Chem. Lett. 2018, 9, 1509–1515.

43

Stigler, J.; Rief, M. Calcium-dependent folding of single calmodulin molecules. Proc. Natl. Acad. Sci. USA 2012, 109, 17814–17819.

44

Pelz, B.; Žoldák, G.; Zeller, F.; Zacharias, M.; Rief, M. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy. Nat. Commun. 2016, 7, 10848.

45

Gunnoo, M.; Cazade, P. A.; Orlowski, A.; Chwastyk, M.; Liu, H. P.; Ta, D. T.; Cieplak, M.; Nash, M.; Thompson, D. Steered molecular dynamics simulations reveal the role of Ca2+ in regulating mechanostability of cellulose-binding proteins. Phys. Chem. Chem. Phys. 2018, 20, 22674–22680.

46

Zheng, P.; Cao, Y.; Bu, T. J.; Straus, S. K.; Li, H. B. Single molecule force spectroscopy reveals that electrostatic interactions affect the mechanical stability of proteins. Biophys. J. 2011, 100, 1534–1541.

47

Muddassir, M.; Manna, B.; Singh, P.; Singh, S.; Kumar, R.; Ghosh, A.; Sharma, D. Single-molecule force-unfolding of titin I27 reveals a correlation between the size of the surrounding anions and its mechanical stability. Chem. Commun. 2018, 54, 9635–9638.

48

Yang, B.; Liu, Z. W.; Liu, H. P.; Nash, M. A. Next generation methods for single-molecule force spectroscopy on polyproteins and receptor-ligand complexes. Front. Mol. Biosci. 2020, 7, 85.

49

Stahl, S. W.; Nash, M. A.; Fried, D. B.; Slutzki, M.; Barak, Y.; Bayer, E. A.; Gaub, H. E. Single-molecule dissection of the high-affinity cohesin-dockerin complex. Proc. Natl. Acad. Sci. USA 2012, 109, 20431–20436.

50

Durner, E.; Ott, W.; Nash, M. A.; Gaub, H. E. Post-translational sortase-mediated attachment of high-strength force spectroscopy handles. ACS Omega 2017, 2, 3064–3069.

51

Deng, Y. B.; Wu, T.; Wang, M. D.; Shi, S. C.; Yuan, G. D.; Li, X.; Chong, H. C.; Wu, B.; Zheng, P. Enzymatic biosynthesis and immobilization of polyprotein verified at the single-molecule level. Nat. Commun. 2019, 10, 2775.

52

Dietz, H.; Rief, M. Protein structure by mechanical triangulation. Proc. Natl. Acad. Sci. USA 2006, 103, 1244–1247.

53

Becke, T. D.; Ness, S.; Kaufmann, B. K.; Hartmann, B.; Schilling, A. F.; Sudhop, S.; Hilleringmann, M.; Clausen-Schaumann, H. Pilus-1 backbone protein RrgB of streptococcus pneumoniae binds collagen i in a force-dependent way. ACS Nano 2019, 13, 7155–7165.

54

Xing, H.; Li, Z. D.; Wang, W. B.; Liu, P. R.; Liu, J.; Song, Y.; Wu, Z. L.; Zhang, W. K.; Huang, F. H. Mechanochemistry of an interlocked poly[2]catenane: From single molecule to bulk gel. CCS Chem. 2020, 2, 513–523.

55

Bao, Y.; Luo, Z. L.; Cui, S. X. Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications for advanced polymer materials. Chem. Soc. Rev. 2020, 49, 2799–2827.

56
Liu, Z. W.; Moreira, R. A.; Dujmović, A.; Liu, H. P.; Yang, B.; Poma, A. B.; Nash, M. A. Mapping mechanostable pulling geometries of a therapeutic anticalin/CTLA-4 protein complex. Nano Lett., in press, https://doi.org/10.1021/acs.nanolett.1c03584.
DOI
57

Synakewicz, M.; Bauer, D.; Rief, M.; Itzhaki, L. S. Bioorthogonal protein-DNA conjugation methods for force spectroscopy. Sci. Rep. 2019, 9, 13820.

58

Hu, X. L.; Zhao, X. Q.; He, B. Z.; Zhao, Z.; Zheng, Z.; Zhang, P. F.; Shi, X. J.; Kwok, R. T. K.; Lam, J. W. Y.; Qin, A. J. et al. A simple approach to bioconjugation at diverse levels: Metal-free click reactions of activated alkynes with native groups of biotargets without prefunctionalization. Research 2018, 2018, 3152870.

59

Gasymov, O. K.; Abduragimov, A. R.; Glasgow, B. J. Cation-π interactions in lipocalins: Structural and functional implications. Biochemistry 2012, 51, 2991–3002.

60

Bao, G. H.; Clifton, M.; Hoette, T. M.; Mori, K.; Deng, S. X.; Qiu, A. D.; Viltard, M.; Williams, D.; Paragas, N.; Leete, T. et al. Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat. Chem. Biol 2010, 6, 602–609.

61

Goetz, D. H.; Holmes, M. A.; Borregaard, N.; Bluhm, M. E.; Raymond, K. N.; Strong, R. K. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 2002, 10, 1033–1043.

62

Hutter, J. L.; Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 1993, 64, 1868–1873.

63

Marko, J. F.; Siggia, E. D. Stretching DNA. Macromolecules 1995, 28, 8759–8770.

64

Ainavarapu, S. R. K.; Brujić, J.; Huang, H. H.; Wiita, A. P.; Lu, H.; Li, L.; Walther, K. A.; Carrion-Vazquez, M.; Li, H. B.; Fernandez, J. M. Contour length and refolding rate of a small protein controlled by engineered disulfide bonds. Biophys. J. 2007, 92, 225–233.

65

Zheng, P.; Cao, Y.; Li, H. B. Facile method of constructing polyproteins for single-molecule force spectroscopy studies. Langmuir 2011, 27, 5713–5718.

66

Tian, F.; Tong, B.; Sun, L.; Shi, S. C.; Zheng, B.; Wang, Z. B.; Dong, X. C.; Zheng, P. N501y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. Elife 2021, 10, e69091.

67

LeBlanc, M. A.; Fink, M. R.; Perkins, T. T.; Sousa, M. C. Type III secretion system effector proteins are mechanically labile. Proc. Natl. Acad. Sci. USA 2021, 118, e2019566118.

68

Cao, Y.; Lam, C.; Wang, M. J.; Li, H. B. Nonmechanical protein can have significant mechanical stability. Angew. Chem., Int. Ed. 2006, 45, 642–645.

69

Dietz, H.; Bertz, M.; Schlierf, M.; Berkemeier, F.; Bornschlogl, T.; Junker, J. P.; Rief, M. Cysteine engineering of polyproteins for single-molecule force spectroscopy. Nat. Protoc. 2006, 1, 80–84.

70

Zheng, P.; Chou, C. C.; Guo, Y.; Wang, Y. Y.; Li, H. B. Single molecule force spectroscopy reveals the molecular mechanical anisotropy of the FeS4 metal center in rubredoxin. J. Am. Chem. Soc. 2013, 135, 17783–17792.

File
12274_2021_4065_MOESM1_ESM.pdf (987.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 October 2021
Revised: 23 November 2021
Accepted: 09 December 2021
Published: 11 January 2022
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was funded by the Fundamental Research Funds for the Central Universities (No. 14380259), Natural Science Foundation of Jiangsu Province (No. BK20200058), the National Natural Science Foundation of China (Nos. 21771103 and 21977047), and computational resources from computing facilities of the High-Performance Computing Center (HPCC) of Nanjing University.

Return