Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Narrow bandpass filters (NBPFs) play important roles in optics, such as quantum communication, spectrometer, and wavelength division multiplexing. However, the stopband and restraint ability of traditional NBPFs is limited. In this article, a coupled Tamm plasmon polaritons (TPPs) induced transmission theory has been proposed to design high-efficiency NBPFs with ultra-wide deep stopbands. An NBPF at 1.55 μm has been experimentally demonstrated with full width at half maximum (FWHM) of 10 nm and stopband ranging from 0.2 to 25 μm which is 62 times wider than that of traditional ones. Furthermore, the restraint depth of the stopband reaches 0.03%, which is only 1/20 of a traditional filter with the same FWHM. Its advantage in restraining ambient light over traditional ones has also been demonstrated with an InGaAs infrared detector. It provides a very powerful way to capture specific narrowband optical signals from ultra-wide strong ambient light, especially useful for daytime quantum communications.
Richardson, D. J.; Fini, J. M.; Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics 2013, 7, 354–362.
Luo, L. W.; Ophir, N.; Chen, C. P.; Gabrielli, L. H.; Poitras, C. B.; Bergmen, K.; Lipson, M. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 2014, 5, 3069.
Marsili, F.; Verma, V. B.; Stern, J. A.; Harrington, S.; Lita, A. E.; Gerrits, T.; Vayshenker, I.; Baek, B.; Shaw, M. D.; Mirin, R. P. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photonics 2013, 7, 210–214.
Wang, S. W.; Xia, C. S.; Chen, X. S.; Lu, W.; Li, M.; Wang, H. Q.; Zheng, W. B.; Zhang, T. Concept of a high-resolution miniature spectrometer using an integrated filter array. Opt. Lett. 2007, 32, 632–634.
Cong, S.; Liu, X. H.; Jiang, Y. X.; Zhang, W.; Zhao, Z. G. Surface enhanced Raman scattering revealed by interfacial charge-transfer transitions. Innovation 2020, 1, 100051.
Zhang, S. D.; Bin, W.; Xu, B. B.; Zheng, X. Y.; Chen, B. B.; Lv, X. Q.; San, H. S.; Hofmann, W. Mixed-gas CH4/CO2/CO detection based on linear variable optical filter and thermopile detector array. Nanoscale Res. Lett. 2019, 14, 348.
Araújo, A. Multi-spectral pyrometry—a review. Meas. Sci. Technol. 2017, 28, 082002.
Xuan, Z. Y.; Li, J. Y.; Liu, Q. Q.; Yi, F.; Wang, S. W.; Lu, W. Artificial structural colors and applications. Innovation 2021, 2, 100081.
Bierman, D. M.; Lenert, A.; Chan, W. R.; Bhatia, B.; Celanović, I.; Soljačić, M.; Wang, E. N. Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nat. Energy 2016, 1, 16068.
Lenert, A.; Bierman, D. M.; Nam, Y.; Chan, W. R.; Celanović, I.; Soljačić, M.; Wang, E. N. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 2014, 9, 126–130.
Kaushal, H.; Kaddoum, G. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 2017, 19, 57–96.
Khalighi, M. A.; Uysal, M. Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258.
Miao, E. L.; Han, Z. F.; Gong, S. S.; Zhang, T.; Diao, D. S.; Guo, G. C. Background noise of satellite-to-ground quantum key distribution. New J. Phys. 2005, 7, 215–215.
Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 2009, 97, 1166–1185.
Xu, F. H.; Ma, X. F.; Zhang, Q.; Lo, H. K.; Pan, J. W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020, 92, 025002.
Wang, L.; Wang, Z. S.; Wu, Y. G.; Chen, L. Y.; Wang, S. W.; Chen, X. S.; Lu, W. Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures. J. Appl. Phys. 2004, 95, 424–426.
Wang, S. W.; Chen, F. L.; Liang, L. Y.; He, S. L.; Wang, Y. G.; Chen, X. S.; Lu, W. A high-performance blue filter for a white-led-based visible light communication system. IEEE Wirel. Commun. 2015, 22, 61–67.
Lezec, H. J.; Degiron, A.; Devaux, E.; Linke, R. A.; Martin-Moreno, L.; Garcia-Vidal, F. J.; Ebbesen, T. W. Beaming light from a subwavelength aperture. Science 2002, 297, 820–822.
Genet, C.; Ebbesen, T. W. Light in tiny holes. Nature 2007, 445, 39–46.
Yang, C. Y.; Shen, W. D.; Zhou, J.; Fang, X.; Zhao, D.; Zhang, X.; Ji, C. G.; Fang, B.; Zhang, Y. G.; Liu, X. et al. Angle robust reflection/transmission plasmonic filters using ultrathin metal patch array. Adv. Opt. Mater. 2016, 4, 1981–1986.
Fan, S. H.; Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 2002, 65, 235112.
Fan, S. H.; Suh, W.; Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 2003, 20, 569–572.
Shen, Y. C.; Rinnerbauer, V.; Wang, I.; Stelmakh, V.; Joannopoulos, J. D. Soljačić, M. Structural colors from Fano resonances. ACS Photonics 2015, 2, 27–32.
Proust, J.; Bedu, F.; Gallas, B.; Ozerov, I.; Bonod, N. All-dielectric colored metasurfaces with silicon Mie resonators. ACS Nano 2016, 10, 7761–7767.
Sun, S.; Zhou, Z. X.; Zhang, C.; Gao, Y. S.; Duan, Z. H.; Xiao, S. M.; Song, Q. H. All-dielectric full-color printing with TiO2 Metasurfaces. ACS Nano 2017, 11, 4445–4452.
Yang, J. H.; Babicheva, V. E.; Yu, M. W.; Lu, T. C.; Lin, T. R.; Chen, K. P. Structural colors enabled by lattice resonance on silicon nitride metasurfaces. ACS Nano 2020, 14, 5678–5685.
Kaliteevski, M.; Iorsh, I.; Brand, S.; Abram, R. A.; Chamberlain, J. M.; Kavokin, A. V.; Shelykh, I. A. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B 2007, 76, 165415.
Symonds, C.; Lheureux, G.; Hugonin, J. P.; Greffet, J. J.; Laverdant, J.; Brucoli, G.; Lemaitre, A.; Senellart, P.; Bellessa, J. Confined Tamm plasmon lasers. Nano Lett. 2013, 13, 3179–3184.
Wang, Z. Y.; Clark, J. K.; Ho, Y. L.; Vilquin, B.; Daiguji, H.; Delaunay, J. J. Narrowband thermal emission realized through the coupling of cavity and Tamm Plasmon resonances. ACS Photonics 2018, 5, 2446–2452.
Liu, X. X.; Li, Z. W.; Wen, Z. J.; Wu, M. F.; Lu, J. L.; Chen, X.; Zhao, X. C.; Wang, T.; Ji, R. N.; Zhang, Y. F. et al. Large-area, lithography-free, narrow-band and highly directional thermal emitter. Nanoscale 2019, 11, 19742–19750.
Wang, Z. Y.; Clark, J. K.; Ho, Y. L.; Delaunay, J. J. Hot-electron photodetector with wavelength selectivity in near-infrared via Tamm plasmon. Nanoscale 2019, 11, 17407–17414.
Lu, H.; Li, Y. W.; Yue, Z. J.; Mao, D.; Zhao, J. L. Topological insulator based Tamm plasmon polaritons. APL Photonics 2019, 4, 040801.
Tsurimaki, Y.; Tong, J. K.; Boriskin, V. N.; Semenov, A.; Ayzatsky, M. I.; Machekhin, Y. P.; Chen, G.; Boriskina, S. V. Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection. ACS Photonics 2018, 5, 929–938.
Yang, Z. Y.; Ishii, S.; Yokoyama, T.; Dao, T. D.; Sun, M. G.; Pankin, P. S.; Timofeev, I. V.; Nagao, T.; Chen, K. P. Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons. ACS Photonics 2017, 4, 2212–2219.
Lundt, N.; Klembt, S.; Cherotchenko, E.; Betzold, S.; Iff, O.; Nalitov, A. V.; Klaas, M.; Dietrich, C. P.; Kavokin, A. V.; Höfling, S. et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat. Commun. 2016, 7, 13328.
Ciesielski, A.; Skowronski, L.; Trzcinski, M.; Szoplik, T. Controlling the optical parameters of self-assembled silver films with wetting layers and annealing. Appl. Surf. Sci. 2017, 421, 349–356.
Joe, Y. S.; Satanin, A. M.; Kim, C. S. Classical analogy of Fano resonances. Phys. Scr. 2006, 74, 259–266.
Zhou, H. C.; Yang, G.; Wang, K.; Long, H.; Lu, P. X. Coupled optical Tamm states in a planar dielectric mirror structure containing a thin metal film. Chin. Phys. Lett. 2012, 29, 067101.