AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Coupled Tamm plasmon polaritons induced narrow bandpass filter with ultra-wide stopband

Qingquan Liu1,2,3,4Xinchao Zhao1,3,4Chenlu Li1,2,3,4Xinglei Zhou1,4Yu Chen6Shaowei Wang1,3,4,5( )Wei Lu1,2,3,4,5( )
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
University of Chinese Academy of Sciences, Beijing 100049, China
Shanghai Engineering Research Center of Energy-Saving Coatings, Shanghai 200083, China
Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Show Author Information

Graphical Abstract

A narrow bandpass filter (NBPF) with ultra-wide stopband based on the coupled Tamm plasmon polaritons (TPPs) transmission theory is proposed and fabricated. It only allows the light with a wavelength of 1.55 μm to pass through and shields light with other wavelengths. This performance is much better than the traditional filters and those reported novel metamaterial filters.

Abstract

Narrow bandpass filters (NBPFs) play important roles in optics, such as quantum communication, spectrometer, and wavelength division multiplexing. However, the stopband and restraint ability of traditional NBPFs is limited. In this article, a coupled Tamm plasmon polaritons (TPPs) induced transmission theory has been proposed to design high-efficiency NBPFs with ultra-wide deep stopbands. An NBPF at 1.55 μm has been experimentally demonstrated with full width at half maximum (FWHM) of 10 nm and stopband ranging from 0.2 to 25 μm which is 62 times wider than that of traditional ones. Furthermore, the restraint depth of the stopband reaches 0.03%, which is only 1/20 of a traditional filter with the same FWHM. Its advantage in restraining ambient light over traditional ones has also been demonstrated with an InGaAs infrared detector. It provides a very powerful way to capture specific narrowband optical signals from ultra-wide strong ambient light, especially useful for daytime quantum communications.

Electronic Supplementary Material

Download File(s)
12274_2021_4064_MOESM1_ESM.pdf (1.5 MB)

References

1

Richardson, D. J.; Fini, J. M.; Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics 2013, 7, 354–362.

2

Luo, L. W.; Ophir, N.; Chen, C. P.; Gabrielli, L. H.; Poitras, C. B.; Bergmen, K.; Lipson, M. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 2014, 5, 3069.

3
MacLeod, A. H. Thin-Film Optical Filters; 4th ed. CRC Press: New York, 2010.https://doi.org/10.1201/9781420073034
4

Marsili, F.; Verma, V. B.; Stern, J. A.; Harrington, S.; Lita, A. E.; Gerrits, T.; Vayshenker, I.; Baek, B.; Shaw, M. D.; Mirin, R. P. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photonics 2013, 7, 210–214.

5

Wang, S. W.; Xia, C. S.; Chen, X. S.; Lu, W.; Li, M.; Wang, H. Q.; Zheng, W. B.; Zhang, T. Concept of a high-resolution miniature spectrometer using an integrated filter array. Opt. Lett. 2007, 32, 632–634.

6

Cong, S.; Liu, X. H.; Jiang, Y. X.; Zhang, W.; Zhao, Z. G. Surface enhanced Raman scattering revealed by interfacial charge-transfer transitions. Innovation 2020, 1, 100051.

7

Zhang, S. D.; Bin, W.; Xu, B. B.; Zheng, X. Y.; Chen, B. B.; Lv, X. Q.; San, H. S.; Hofmann, W. Mixed-gas CH4/CO2/CO detection based on linear variable optical filter and thermopile detector array. Nanoscale Res. Lett. 2019, 14, 348.

8

Araújo, A. Multi-spectral pyrometry—a review. Meas. Sci. Technol. 2017, 28, 082002.

9

Xuan, Z. Y.; Li, J. Y.; Liu, Q. Q.; Yi, F.; Wang, S. W.; Lu, W. Artificial structural colors and applications. Innovation 2021, 2, 100081.

10

Bierman, D. M.; Lenert, A.; Chan, W. R.; Bhatia, B.; Celanović, I.; Soljačić, M.; Wang, E. N. Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nat. Energy 2016, 1, 16068.

11

Lenert, A.; Bierman, D. M.; Nam, Y.; Chan, W. R.; Celanović, I.; Soljačić, M.; Wang, E. N. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 2014, 9, 126–130.

12

Kaushal, H.; Kaddoum, G. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 2017, 19, 57–96.

13

Khalighi, M. A.; Uysal, M. Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258.

14

Miao, E. L.; Han, Z. F.; Gong, S. S.; Zhang, T.; Diao, D. S.; Guo, G. C. Background noise of satellite-to-ground quantum key distribution. New J. Phys. 2005, 7, 215–215.

15

Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 2009, 97, 1166–1185.

16

Xu, F. H.; Ma, X. F.; Zhang, Q.; Lo, H. K.; Pan, J. W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020, 92, 025002.

17
Popkin, G. China’s quantum satellite achieves ‘spooky action’ at record distance. Science, in press, https://doi.org/10.1126/science.aan6972.
18
Joannopoulos, J. D.; Meade, R. D.; Winn, J. N. Photonic Crystals: Molding the Flow of Light; Pinceton University Press: Princeton, 1995.
19

Wang, L.; Wang, Z. S.; Wu, Y. G.; Chen, L. Y.; Wang, S. W.; Chen, X. S.; Lu, W. Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures. J. Appl. Phys. 2004, 95, 424–426.

20

Wang, S. W.; Chen, F. L.; Liang, L. Y.; He, S. L.; Wang, Y. G.; Chen, X. S.; Lu, W. A high-performance blue filter for a white-led-based visible light communication system. IEEE Wirel. Commun. 2015, 22, 61–67.

21

Lezec, H. J.; Degiron, A.; Devaux, E.; Linke, R. A.; Martin-Moreno, L.; Garcia-Vidal, F. J.; Ebbesen, T. W. Beaming light from a subwavelength aperture. Science 2002, 297, 820–822.

22

Genet, C.; Ebbesen, T. W. Light in tiny holes. Nature 2007, 445, 39–46.

23

Yang, C. Y.; Shen, W. D.; Zhou, J.; Fang, X.; Zhao, D.; Zhang, X.; Ji, C. G.; Fang, B.; Zhang, Y. G.; Liu, X. et al. Angle robust reflection/transmission plasmonic filters using ultrathin metal patch array. Adv. Opt. Mater. 2016, 4, 1981–1986.

24

Fan, S. H.; Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 2002, 65, 235112.

25

Fan, S. H.; Suh, W.; Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 2003, 20, 569–572.

26

Shen, Y. C.; Rinnerbauer, V.; Wang, I.; Stelmakh, V.; Joannopoulos, J. D. Soljačić, M. Structural colors from Fano resonances. ACS Photonics 2015, 2, 27–32.

27

Proust, J.; Bedu, F.; Gallas, B.; Ozerov, I.; Bonod, N. All-dielectric colored metasurfaces with silicon Mie resonators. ACS Nano 2016, 10, 7761–7767.

28

Sun, S.; Zhou, Z. X.; Zhang, C.; Gao, Y. S.; Duan, Z. H.; Xiao, S. M.; Song, Q. H. All-dielectric full-color printing with TiO2 Metasurfaces. ACS Nano 2017, 11, 4445–4452.

29

Yang, J. H.; Babicheva, V. E.; Yu, M. W.; Lu, T. C.; Lin, T. R.; Chen, K. P. Structural colors enabled by lattice resonance on silicon nitride metasurfaces. ACS Nano 2020, 14, 5678–5685.

30

Kaliteevski, M.; Iorsh, I.; Brand, S.; Abram, R. A.; Chamberlain, J. M.; Kavokin, A. V.; Shelykh, I. A. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B 2007, 76, 165415.

31

Symonds, C.; Lheureux, G.; Hugonin, J. P.; Greffet, J. J.; Laverdant, J.; Brucoli, G.; Lemaitre, A.; Senellart, P.; Bellessa, J. Confined Tamm plasmon lasers. Nano Lett. 2013, 13, 3179–3184.

32

Wang, Z. Y.; Clark, J. K.; Ho, Y. L.; Vilquin, B.; Daiguji, H.; Delaunay, J. J. Narrowband thermal emission realized through the coupling of cavity and Tamm Plasmon resonances. ACS Photonics 2018, 5, 2446–2452.

33

Liu, X. X.; Li, Z. W.; Wen, Z. J.; Wu, M. F.; Lu, J. L.; Chen, X.; Zhao, X. C.; Wang, T.; Ji, R. N.; Zhang, Y. F. et al. Large-area, lithography-free, narrow-band and highly directional thermal emitter. Nanoscale 2019, 11, 19742–19750.

34

Wang, Z. Y.; Clark, J. K.; Ho, Y. L.; Delaunay, J. J. Hot-electron photodetector with wavelength selectivity in near-infrared via Tamm plasmon. Nanoscale 2019, 11, 17407–17414.

35

Lu, H.; Li, Y. W.; Yue, Z. J.; Mao, D.; Zhao, J. L. Topological insulator based Tamm plasmon polaritons. APL Photonics 2019, 4, 040801.

36

Tsurimaki, Y.; Tong, J. K.; Boriskin, V. N.; Semenov, A.; Ayzatsky, M. I.; Machekhin, Y. P.; Chen, G.; Boriskina, S. V. Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection. ACS Photonics 2018, 5, 929–938.

37

Yang, Z. Y.; Ishii, S.; Yokoyama, T.; Dao, T. D.; Sun, M. G.; Pankin, P. S.; Timofeev, I. V.; Nagao, T.; Chen, K. P. Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons. ACS Photonics 2017, 4, 2212–2219.

38

Lundt, N.; Klembt, S.; Cherotchenko, E.; Betzold, S.; Iff, O.; Nalitov, A. V.; Klaas, M.; Dietrich, C. P.; Kavokin, A. V.; Höfling, S. et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat. Commun. 2016, 7, 13328.

39

Ciesielski, A.; Skowronski, L.; Trzcinski, M.; Szoplik, T. Controlling the optical parameters of self-assembled silver films with wetting layers and annealing. Appl. Surf. Sci. 2017, 421, 349–356.

40

Joe, Y. S.; Satanin, A. M.; Kim, C. S. Classical analogy of Fano resonances. Phys. Scr. 2006, 74, 259–266.

41

Zhou, H. C.; Yang, G.; Wang, K.; Long, H.; Lu, P. X. Coupled optical Tamm states in a planar dielectric mirror structure containing a thin metal film. Chin. Phys. Lett. 2012, 29, 067101.

Nano Research
Pages 4563-4568
Cite this article:
Liu Q, Zhao X, Li C, et al. Coupled Tamm plasmon polaritons induced narrow bandpass filter with ultra-wide stopband. Nano Research, 2022, 15(5): 4563-4568. https://doi.org/10.1007/s12274-021-4064-x
Topics:

834

Views

19

Crossref

19

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 01 October 2021
Revised: 17 November 2021
Accepted: 09 December 2021
Published: 27 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return