Journal Home > Volume 15 , Issue 5

Solar thermal interfacial water evaporation is proposed as a promising route to address freshwater scarcity, which can reduce energy consumption and have unlimited application scenarios. The large semiconductor family with controllable bandgap and good chemo-physical stability are considered as good candidates for photo-evaporation. However, the evaporation rate is not satisfactory because the rational control of nano/micro structure and composition is still in its infancy stage. Herein, by systemically analyzing the photo-thermal evaporation processes, we applied the hollow multishelled structure (HoMS) into this application. Benefiting from the multishelled and hierarchical porous structure, the light absorption, thermal regulation, and water transport are simultaneously optimized, resulting in a water evaporation rate of 3.2 kg·m−2·h−1, which is among the best performance in solar-vapour generation. The collected water from different water resources meets the World Health Organization standard for drinkable water. Interestingly, by using the CuO/Cu2O system, reactive oxygen species were generated for water disinfection, showing a new route for efficient solar-vapour generation and a green way to obtain safe drinking water.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multishelled CuO/Cu2O induced fast photo-vapour generation for drinking water

Show Author's information Xuanbo Chen1,2Ping Li3Jiao Wang2,4Jiawei Wan2,5Nailiang Yang2,5( )Bo Xu6Lianming Tong6Lin Gu5,7Jiang Du4Jianjian Lin3( )Ranbo Yu1( )Dan Wang2,5( )
Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
State Key Laboratory of Biochemical Engineering, Key Laboratory of Science and Technology on Particle Materials, Chinese Academy of Sciences, Beijing 100190, China
Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Henan Province Industrial Technology Research Institute of Resources and Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
University of Chinese Academy of Sciences, Beijing 100049, China
Center for Nano-chemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Solar thermal interfacial water evaporation is proposed as a promising route to address freshwater scarcity, which can reduce energy consumption and have unlimited application scenarios. The large semiconductor family with controllable bandgap and good chemo-physical stability are considered as good candidates for photo-evaporation. However, the evaporation rate is not satisfactory because the rational control of nano/micro structure and composition is still in its infancy stage. Herein, by systemically analyzing the photo-thermal evaporation processes, we applied the hollow multishelled structure (HoMS) into this application. Benefiting from the multishelled and hierarchical porous structure, the light absorption, thermal regulation, and water transport are simultaneously optimized, resulting in a water evaporation rate of 3.2 kg·m−2·h−1, which is among the best performance in solar-vapour generation. The collected water from different water resources meets the World Health Organization standard for drinkable water. Interestingly, by using the CuO/Cu2O system, reactive oxygen species were generated for water disinfection, showing a new route for efficient solar-vapour generation and a green way to obtain safe drinking water.

Keywords: hollow structure, multishelled structure, water evaporation, nano/micro structure

References(38)

1

Alvarez, P. J. J.; Chan, C. K.; Elimelech, M.; Halas, N. J.; Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 2018, 13, 634–641.

2

Werber, J. R.; Osuji, C. O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018.

3

Al-Abri, M.; Al-Ghafri, B.; Bora, T.; Dobretsov, S.; Dutta, J.; Castelletto, S.; Rosa, A.; Boretti. L. Chlorination disadvantages and alternative routes for biofouling control in reverse osmosis desalination. NPJ Clean Water. 2019, 2, 2.

4

Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041.

5
Wang, Y. W.; Zhang, J. C.; Liang W. K.; Yang, H.; Guan, T. F.; Zhao, B.; Sun, Y. H.; Chi, L. F.; Jiang, L. Rational design of plasmonic metal nanostructures for solar energy conversion. CCS Chem. 2021, 3, 2127−2142.
6

Zhou, L.; Li, X. Q.; Ni, G. W.; Zhu, S. N.; Zhu, J. The revival of thermal utilization from the sun: Interfacial solar vapor generation. Natl. Sci. Rev. 2019, 6, 562–578.

7

Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.

8

Lei, W. W.; Khan, S.; Chen, L.; Suzuki, N.; Terashima, C.; Liu, K. S.; Liu, M. J. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Res. 2021, 14, 1135–1140.

9

Zhao, F.; Zhou, X. Y.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X. P.; Mendez, S.; Yang, R. G.; Qu, L. T.; Yu, G. H. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495.

10

Li, W.; Li, X.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

11

Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

12

Zhou, X. Y.; Guo, Y. H.; Zhao, F.; Shi, W.; Yu, G. H. Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 2020, 32, 2007012.

13

Ni, G.; Li, G.; Boriskina, S. V.; Li, H. X.; Yang, W. L.; Zhang, T. J.; Chen, G. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 2016, 1, 16126.

14

Xu, W. C.; Hu, X. Z.; Zhuang, S. D.; Wang, Y. X.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 2018, 8, 1702884.

15

Wei, Y. Z.; Yang, N. L.; Huang, K. K.; Wan, J. W.; You, F. F.; Yu, R. B.; Feng, S. H.; Wang, D. Steering hollow multishelled structures in photocatalysis: Optimizing surface and mass transport. Adv. Mater. 2020, 32, 2002556.

16

Lien, D. H.; Dong, Z. H.; Retamal, J. R. D.; Wang, H. P.; Wei, T. C.; Wang, D.; He, J. H.; Cui, Y. Resonance-enhanced absorption in hollow nanoshell spheres with omnidirectional detection and high responsivity and speed. Adv. Mater. 2018, 30, 1801972.

17

Zhao, D. C.; Yang, N. L.; Wei, Y.; Jin, Q.; Wang, Y. L.; He, H. Y.; Yang, Y.; Han, B.; Zhang, S. J.; Wang, D. Sequential drug release via chemical diffusion and physical barriers enabled by hollow multishelled structures. Nat. Commun. 2020, 11, 4450.

18

Chen, X. B.; Yang, N. L.; Wang, Y. L.; He, H. Y.; Wang, J. Y.; Wan, J. W.; Jiang, H. Y.; Xu, B.; Wang, L. M.; Yu, R. B.; et, al. Highly efficient photothermal conversion and water transport during solar evaporation enabled by amorphous hollow multishelled nanocomposites. Adv. Mater. 2021, 33, 2107400.

19

Ong, W. K.; Yao, X. M.; Jana, D.; Li, M. H.; Zhao, Y. L.; Luo, Z. Efficient production of reactive oxygen species from Fe3O4/ZnPC coloaded nanoreactor for cancer therapeutics in vivo. Small Struct. 2020, 1, 2000065.

20

Sun, Y. D.; Shi, H.; Cheng, X. Y.; Wu, L. Y.; Wang, Y. Q.; Zhou, Z. Y.; He, J.; Chen, H. Y.; Ye, D. J. Degradable hybrid CuS nanoparticles for imaging-guided synergistic cancer therapy via low-power NIR-II light excitation. CCS Chem. 2020, 3, 1336–1349.

21

Huang, Y.; Gao Q.; Li, X.; Gao, Y. F.; Han, H. J.; Jin, Q.; Yao, K.; Ji, J. Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. Nano Res. 2020, 13, 2340–2350.

22

Wang, L.; Wan, J. W.; Wang, J. Y.; Wang, D. Small structures bring big things: Performance control of hollow multishelled structures. Small Struct. 2021, 2, 2000041.

23

Wang, C.; Wang J. Y.; Hu, W. P.; Wang, D. Controllable synthesis of hollow multishell structured Co3O4 with improved rate performance and cyclic stability for supercapacitors. Chem. Res. Chin. Univ. 2020, 36, 68–73.

24

Zhao, J. L.; Yang, M.; Yang, N. L.; Wang, J. Y.; Wang, D. Hollow micro-/nanostructure reviving lithium-sulfur batteries. Chem. Res. Chin. Univ. 2020, 36, 313–319.

25

Wang, J. Y.; Wan, J. W.; Yang, N. L.; Li, Q.; Wang, D. Hollow multishell structures exercise temporal-spatial ordering and dynamic smart behaviour. Nat. Rev. Chem. 2020, 4, 159–168.

26

Wang, P.; Mao, D.; Wan, J.; Qi, Q.; Du, J.; Wang, D. Effect of hollow multi-shelled TiO2 on mechanical properties of epoxy resin composites. Chem. Res. Chin. Univ. 2021, 42, 3218–3224.

27

Hou, P.; Li, D.; Yang, N. L.; Wan, J. W.; Zhang, C. H.; Zhang, X. Q.; Jiang, H. Y.; Zhang, Q. H.; Gu, L.; Wang, D. Delicate control on the shell structure of hollow spheres enables tunable mass transport in water splitting. Angew. Chem., Int. Ed. 2021, 60, 6926–6931.

28

Wang, Z. L. New developments in transmission electron microscopy for nanotechnology. Adv. Mater. 2003, 15, 1497–1514.

29

Nassiri, Y.; Mansot, J. L.; Wéry, J.; Vogel, T. G.; Amiard, J. C. Ultrastructural and electron energy loss spectroscopy studies of sequestration mechanisms of Cd and Cu in the marine diatom Skeletonema costatum. Arch. Environ. Contam. Toxicol. 1997, 33, 147–155.

30

Yin, M.; Wu, C. K.; Lou, Y. B.; Burda, C.; Koberstein, J. T.; Zhu, Y. M.; O’Brien, S. Copper oxide nanocrystals. J. Am. Chem. Soc. 2005, 127, 9506–9511.

31

Bersani, M.; Gupta, K.; Mishra, A. K.; Lanza, R.; Taylor, S. F. R.; Islam, H. U.; Hollingsworth, N.; Hardacre, C.; de Leeuw, N. H.; Darr, J. A. Combined EXAFS, XRD, DRIFTS, and DFT study of nano copper-based catalysts for CO2 hydrogenation. ACS Catal. 2016, 6, 5823–5833.

32

Kim, J. Y.; Rodriguez, J. A.; Hanson, J. C.; Frenkel, A. I.; Lee, P. L. Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J. Am. Chem. Soc. 2003, 125, 10684–10692.

33

Carrasco, E.; del Rosal, B.; Sanz-Rodríguez, F.; de la Fuente, Á. J.; Gonzalez, P. H.; Rocha, U.; Kumar, K. U.; Jacinto, C.; Solé, J. G.; Jaque, D. Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Adv. Funct. Mater. 2015, 25, 615–626.

34

Toe, C. Y.; Zheng, Z. K.; Wu, H.; Scott, J.; Amal, R.; Ng, Y. H. Photocorrosion of cuprous oxide in hydrogen production: Rationalising self-oxidation or self-reduction. Angew. Chem., Int. Ed. 2018, 57, 13613–13617.

35

Zhao, F.; Guo, Y. H.; Zhou, X. Y.; Shi, W.; Yu, G. H. Materials for solar-powered water evaporation. Nat. Rev. Mater. 2020, 5, 388–401.

36
World Health Organization (WHO). Guidelines for Drinking-Water Quality, 4th Edition, Incorporating the 1st Addendum [Online].https://www.who.int/publications/i/item/9789241549950 (accessed Sep. 20, 2021).
37

Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.

38

Hawkins, C. L.; Davies, M. J. EPR studies on the selectivity of hydroxyl radical attack on amino acids and peptides. J. Chem. Soc. Perkin Trans. 1998, 2, 2617–2622.

File
12274_2021_4063_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 September 2021
Revised: 02 December 2021
Accepted: 09 December 2021
Published: 08 February 2022
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 92163209, 21931012, 21971244, 51872024, and 51932001), and Talent Team of Taishan Scholar’s Advantageous and Characteristic Disciplines of Shandong Province. Prof. Lin thanks the Taishan Scholarship Project of Shandong Province (No. tsqn201909115). The authors also thank the BL1W2A in BSRF, BL14W1, BL11B in SSRF for synchrotron radiation measurement.

Return