Journal Home > Volume 15 , Issue 5

Developing efficient and robust electrocatalysts toward ethanol oxidation reaction (EOR) with high C1 pathway selectivity is critical for commercialization of direct ethanol fuel cells (DEFCs). Unfortunately, current most EOR electrocatalysts suffer from rapid activity degradation and poor C1 pathway selectivity for complete oxidation of ethanol. Herein, we report a novel electrocatalyst of five-fold twinned (FFT) Ir-alloyed Pt nanorods (NRs) toward EOR. Such FFT Pt-Ir NRs bounded by five (100) facets on the sides and ten (111) facets at two ends possess high percentage of (100) facets with tensile strain. Owing to the inherent characteristics of the FFT NR and Ir alloying, the as-prepared FFT Pt-Ir NRs display excellent alkaline EOR performance with a mass activity (MA) of 4.18 A·mgPt−1, a specific activity (SA) of 10.22 mA·cm−2, and a Faraday efficiency of 61.21% for the C1 pathway, which are 6.85, 5.62, and 7.70 times higher than those of a commercial Pt black, respectively. Besides, our catalyst also exhibits robust durability. The large percentage of open tensile-strained (100) facets and Ir alloying significantly promote the cleavage of C–C bonds and facilitate oxidation of the poisonous intermediates, leading to the transformation of the dominant reaction pathway for EOR from C2 to C1 pathway, and effectively suppress the deactivation of the catalyst.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Five-fold twinned Ir-alloyed Pt nanorods with high C1 pathway selectivity for ethanol electrooxidation

Show Author's information Yan Fang1,§Shiyu Guo1,§Dongjie Cao1Genlei Zhang1( )Qi Wang1Yazhong Chen1Peng Cui1Sheng Cheng1Wansheng Zuo2
School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, China
Wuhu Tus-semiconductor Co., Limin East Road 82, Wuhu 241000, China

§ Yan Fang and Shiyu Guo contributed equally to this work.

Abstract

Developing efficient and robust electrocatalysts toward ethanol oxidation reaction (EOR) with high C1 pathway selectivity is critical for commercialization of direct ethanol fuel cells (DEFCs). Unfortunately, current most EOR electrocatalysts suffer from rapid activity degradation and poor C1 pathway selectivity for complete oxidation of ethanol. Herein, we report a novel electrocatalyst of five-fold twinned (FFT) Ir-alloyed Pt nanorods (NRs) toward EOR. Such FFT Pt-Ir NRs bounded by five (100) facets on the sides and ten (111) facets at two ends possess high percentage of (100) facets with tensile strain. Owing to the inherent characteristics of the FFT NR and Ir alloying, the as-prepared FFT Pt-Ir NRs display excellent alkaline EOR performance with a mass activity (MA) of 4.18 A·mgPt−1, a specific activity (SA) of 10.22 mA·cm−2, and a Faraday efficiency of 61.21% for the C1 pathway, which are 6.85, 5.62, and 7.70 times higher than those of a commercial Pt black, respectively. Besides, our catalyst also exhibits robust durability. The large percentage of open tensile-strained (100) facets and Ir alloying significantly promote the cleavage of C–C bonds and facilitate oxidation of the poisonous intermediates, leading to the transformation of the dominant reaction pathway for EOR from C2 to C1 pathway, and effectively suppress the deactivation of the catalyst.

Keywords: ethanol oxidation reaction (EOR), five-fold twinned nanorod, Pt-Ir alloy, tensile-strained (100) facets, C1 pathway selectivity

References(59)

1

Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.

2

Sheng, T.; Xu, Y. F.; Jiang, Y. X.; Huang, L.; Tian, N.; Zhou, Z. Y.; Broadwell, I.; Sun, S. G. Structure design and performance tuning of nanomaterials for electrochemical energy conversion and storage. Acc. Chem. Res. 2016, 49, 2569–2577.

3

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, 4998.

4

Jiao, K.; Xuan, J.; Du, Q.; Bao, Z. M.; Xie, B.; Wang, B. W.; Zhao, Y.; Fan, L. H.; Wang, H. Z.; Hou, Z. J. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369.

5

Zhang, G. L.; Liu, Z. Y.; Xiao, Z. L.; Huang, J. L.; Li, Q. B.; Wang, Y. X.; Sun, D. H. Ni2P-graphite nanoplatelets supported Au-Pd core–shell nanoparticles with superior electrochemical properties. J. Phys. Chem. C 2015, 119, 10469–10477.

6

Zhang, G. L.; Yang, Z. Z.; Zhang, W.; Hu, H. W.; Wang, C. Z.; Huang, C. D.; Wang, Y. X. Tailoring the morphology of Pt3Cu1 nanocrystals supported on graphene nanoplates for ethanol oxidation. Nanoscale 2016, 8, 3075–3084.

7

Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, 1603068.

8

Rizo, R.; Arán-Ais, R. M.; Padgett, E.; Muller, D. A.; Lázaro, M. J.; Solla-Gullón, J.; Feliu, J. M.; Pastor, E.; Abruña, H. D. Pt-richcore/Sn-richsubsurface/Ptskin nanocubes as highly active and stable electrocatalysts for the ethanol oxidation reaction. J. Am. Chem. Soc. 2018, 140, 3791–3797.

9

Yang, Z. Z.; Shi, Y.; Wang, X. S.; Zhang, G. L.; Cui, P. Boron as a superior activator for Pt anode catalyst in direct alcohol fuel cell. J. Power Sources 2019, 431, 125–134.

10

Zhang, J. W.; Ye, J. Y.; Fan, Q. Y.; Jiang, Y. T.; Zhu, Y. F.; Li, H. Q.; Cao, Z. M.; Kuang, Q.; Cheng, J.; Zheng, J. et al. Cyclic penta-twinned rhodium nanobranches as superior catalysts for ethanol electro-oxidation. J. Am. Chem. Soc. 2018, 140, 11232–11240.

11

Zhang, G. L.; Shi, Y.; Fang, Y.; Cao, D. J.; Guo, S. Y.; Wang, Q.; Chen, Y. Z.; Cui, P.; Cheng, S. Ordered PdCu-based core-shell concave nanocubes enclosed by high-index facets for ethanol electrooxidation. ACS Appl. Mater. Interfaces 2021, 13, 33147–33156.

12
Li, S.; Wang, Y.; Li, Y.; Fang, X.; Liu, Y.; Li, M.; Wang, Z.; Gao, Y.; Sun, H.; Gao, F.; Zhang, X.; Dai, X. PtNiCu nanowires with advantageous lattice-plane boundary for enhanced ethanol electrooxidation. Nano Res. 2021, https://doi.org/10.1007/s12274-021-3881-2.
13

Ghosh, S.; Ramos, L. and Remita, H. Swollen hexagonal liquid crystals as smart nanoreactors: implementation in materials chemistry for energy applications. Nanoscale 2018, 10, 5793–5819.

14

Bai, S. X.; Xu, Y.; Cao, K. L.; Huang, X. Q. Selective ethanol oxidation reaction at the Rh-SnO2 interface. Adv. Mater. 2021, 33, 2005767.

15

Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147.

16

Huang, W. J.; Ma, X. Y.; Wang, H.; Feng, R. F.; Zhou, J. G.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Zhao, F. P. et al. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater. 2017, 29, 1703057.

17

Liu, K.; Wang, W.; Guo, P. H.; Ye, J. Y.; Wang, Y. Y.; Li, P. T.; Lyu, Z. X.; Geng, Y. S.; Liu, M. C.; Xie, S. F. Replicating the defect structures on ultrathin Rh nanowires with Pt to achieve superior electrocatalytic activity toward ethanol oxidation. Adv. Funct. Mater. 2019, 29, 1806300.

18

Marinkovic, N. S.; Li, M.; Adzic, R. R. Pt-based catalysts for electrochemical oxidation of ethanol. Top. Curr. Chem. 2019, 377, 11.

19

Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C–C bond cleavage for ethanol oxidation electrocatalysis. ACS Catal. 2019, 9, 6607–6612.

20

Shen, Y.; Gong, B.; Xiao, K. J.; Wang, L. In situ assembly of ultrathin PtRh nanowires to graphene nanosheets as highly efficient electrocatalysts for the oxidation of ethanol. ACS Appl. Mater. Interfaces 2017, 9, 3535–3543.

21

Antoniassi, R. M.; Silva, J. C. M.; Lopes, T.; Neto, A. O.; Spinacé, E. V. Carbon-supported Pt nanoparticles with (100) preferential orientation with enhanced electrocatalytic properties for carbon monoxide, methanol and ethanol oxidation in acidic medium. Int. J. Hydrogen Energy 2017, 42, 28786–28796.

22

Rao, L.; Jiang, Y. X.; Zhang, B. W.; Cai, Y. R.; Sun, S. G. High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation. Phys. Chem. Chem. Phys. 2014, 16, 13662–13671.

23

Wang, H. F.; Liu, Z. P. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: New transition-state searching method for resolving the complex reaction network. J. Am. Chem. Soc. 2008, 130, 10996–11004.

24

Zhou, K. B.; Li, Y. D. Catalysis based on nanocrystals with well-defined facets. Angew. Chem., Int. Ed. 2012, 51, 602–613.

25

Chang, Q. W.; Kattel, S.; Li, X.; Liang, Z. X.; Tackett, B. M.; Denny, S. R.; Zhang, P.; Su, D.; Chen, J. G.; Chen, Z. Enhancing C–C bond scission for efficient ethanol oxidation using PtIr nanocube electrocatalysts. ACS Catal. 2019, 9, 7618–7625.

26

Huang, X. Q.; Zheng, N. F. One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods. J. Am. Chem. Soc. 2009, 131, 4602–4603.

27

Lu, N.; Chen, W.; Fang, G. Y.; Chen, B.; Yang, K. Q.; Yang, Y.; Wang, Z. C.; Huang, S. M.; Li, Y. D. 5-fold twinned nanowires and single twinned right bipyramids of Pd: Utilizing small organic molecules to tune the etching degree of O2/halides. Chem. Mater. 2014, 26, 2453–2459.

28

Huang, H. W.; Ruditskiy, A.; Choi, S. I.; Zhang, L.; Liu, J. Y.; Ye, Z. Z.; Xia, Y. N. One-pot synthesis of penta-twinned palladium nanowires and their enhanced electrocatalytic properties. ACS Appl. Mater. Interfaces 2017, 9, 31203–31212.

29

Luo, S. P.; Zhang, L.; Liao, Y. J.; Li, L. X.; Yang, Q.; Wu, X. T.; Wu, X. Y.; He, D. S.; He, C. Y.; Chen, W. et al. A tensile-strained Pt-Rh single-atom alloy remarkably boosts ethanol oxidation. Adv. Mater. 2021, 33, 2008508.

30

Liu, M. X.; Xie, M.; Jiang, Y. L.; Liu, Z. J.; Lu, Y. M.; Zhang, S. M.; Zhang, Z. X.; Wang, X. X.; Liu, K.; Zhang, Q. et al. Core–shell nanoparticles with tensile strain enable highly efficient electrochemical ethanol oxidation. J. Mater. Chem. A 2021, 9, 15373–15380.

31

Yoon, J.; Khi, N. T.; Kim, H.; Kim, B.; Baik, H.; Back, S.; Lee, S. M.; Lee, S. W.; Kwon, S. J.; Lee, K. High yield synthesis of catalytically active five-fold twinned Pt nanorods from a surfactant-ligated precursor. Chem. Commun. 2013, 49, 573–575.

32

Fang, Y.; Cao, D. J.; Shi, Y. Y.; Guo, S. Y.; Wang, Q.; Zhang, G. L.; Cui, P.; Cheng, S. Highly porous Pt2Ir alloy nanocrystals as a superior catalyst with high-efficiency C–C bond cleavage for ethanol electrooxidation. J. Phys. Chem. Lett. 2021, 12, 6773–6780.

33

Roca-Ayats, M.; Guillén-Villafuerte, O.; García, G.; Soler-Vicedo, M.; Pastor, E.; Martínez-Huerta, M. V. PtSn nanoparticles supported on titanium carbonitride for the ethanol oxidation reaction. Appl. Catal. B: —Environ. 2018, 237, 382–391.

34

Wang, K.; Sriphathoorat, R.; Luo, S. P.; Tang, M.; Du, H. Y.; Shen, P. K. Ultrathin PtCu hexapod nanocrystals with enhanced catalytic performance for electro-oxidation reactions. J. Mater. Chem. A 2016, 4, 13425–13430.

35

Zhang, G. L.; Zhang, Z. X. Ir3Pb alloy nanodendrites with high performance for ethanol electrooxidation and their enhanced durability by alloying trace Au. Inorg. Chem. Front. 2020, 7, 2231–2240.

36

Du, W. X.; Wang, Q.; Saxner, D.; Deskins, N. A.; Su, D.; Krzanowski, J. E.; Frenkel, A. I.; Teng, X. W. Highly active iridium/iridium-tin/tin oxide heterogeneous nanoparticles as alternative electrocatalysts for the ethanol oxidation reaction. J. Am. Chem. Soc. 2011, 133, 15172–15183.

37

Shi, Y.; Fang, Y.; Zhang, G. L.; Wang, X. S.; Cui, P.; Wang, Q.; Wang, Y. X. Hollow PtCu nanorings with high performance for the methanol oxidation reaction and their enhanced durability by using trace Ir. J. Mater. Chem. A 2020, 8, 3795–3802.

38

Jeong, S.; Liu, Y.; Zhong, Y. X.; Zhan, X.; Li, Y. D.; Wang, Y.; Cha, P. M.; Chen, J.; Ye, X. C. Heterometallic seed-mediated growth of monodisperse colloidal copper nanorods with widely tunable plasmonic resonances. Nano Lett. 2020, 20, 7263–7271.

39

Zhang, S. H.; Jiang, Z. Y.; Xie, Z. X.; Xu, X.; Huang, R. B.; Zheng, L. S. Growth of silver nanowires from solutions: A cyclic penta-twinned-crystal growth mechanism. J. Phys. Chem. B 2005, 109, 9416–9421.

40

Narayanan, S.; Cheng, G. M.; Zeng, Z.; Zhu, Y.; Zhu, T. Strain hardening and size effect in five-fold twinned Ag nanowires. Nano Lett. 2015, 15, 4037–4044.

41

Sun, X. H.; Jiang, K. K.; Zhang, N.; Guo, S. J.; Huang, X. Q. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 2015, 9, 7634–7640.

42

Yang, Y. N.; Zhang, J. W.; Wei, Y. J.; Chen, Q. L.; Cao, Z. M.; Li, H. Q.; Chen, J. Y.; Shi, J. L.; Xie, Z. X.; Zheng, L. S. Solvent-dependent evolution of cyclic penta-twinned rhodium icosahedral nanocrystals and their enhanced catalytic properties. Nano Res. 2018, 11, 656–664.

43

Wang, K.; Du, H. Y.; Sriphathoorat, R.; Shen, P. K. Vertex‐type engineering of Pt-Cu-Rh heterogeneous nanocages for highly efficient ethanol electrooxidation. Adv. Mater. 2018, 30, 1804074.

44

Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang, X. One‐pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 3797–3801.

45

Huang, J.; Liu, Y.; Xu, M. J.; Wan, C. Z.; Liu, H. T.; Li, M. F.; Huang, Z. H.; Duan, X. F.; Pan, X. Q.; Huang, Y. PtCuNi tetrahedra catalysts with tailored surfaces for efficient alcohol oxidation. Nano Lett. 2019, 19, 5431–5436.

46

Wang, Y.; Wang, G. W.; Li, G. W.; Huang, B.; Pan, J.; Liu, Q.; Han, J. J.; Xiao, L.; Lu, J. T.; Zhuang, L. Pt-Ru catalyzed hydrogen oxidation in alkaline media: Oxophilic effect or electronic effect? Energy Environ. Sci. 2015, 8, 177–181.

47

Lee, Y. W.; Hwang, E. T.; Kwak, D. H.; Park, K. W. Preparation and characterization of PtIr alloy dendritic nanostructures with superior electrochemical activity and stability in oxygen reduction and ethanol oxidation reactions. Catal. Sci. Technol. 2016, 6, 569–576.

48

Yuan, X. L.; Jiang, B.; Cao, M. H.; Zhang, C. Y.; Liu, X. Z.; Zhang, Q. H.; Lyu, F. L.; Gu, L.; Zhang, Q. Porous Pt nanoframes decorated with Bi(OH)3 as highly efficient and stable electrocatalyst for ethanol oxidation reaction. Nano Res. 2020, 13, 265–272.

49

Lin, H. H.; Muzzio, M.; Wei, K. C.; Zhang, P.; Li, J. R.; Li, N.; Yin, Z. Y.; Su, D.; Sun, S. H. PdAu alloy nanoparticles for ethanol oxidation in alkaline conditions: Enhanced activity and C1 pathway selectivity. ACS Appl. Energy Mater. 2019, 2, 8701–8706.

50

Peng, H. C.; Ren, J.; Wang, Y. C.; Xiong, Y.; Wang, Q. C.; Li, Q.; Zhao, X.; Zhan, L. S.; Zheng, L. R.; Tang, Y. G. et al. One-stone, two birds: Alloying effect and surface defects induced by Pt on Cu2−xSe nanowires to boost C–C bond cleavage for electrocatalytic ethanol oxidation. Nano Energy 2021, 88, 106307.

51

Li, H. Q.; Fan, Q. Y.; Ye, J. Y.; Cao, Z. M.; Ma, Z. F.; Jiang, Y. Q.; Zhang, J. W.; Cheng, J.; Xie, Z. X.; Zheng, L. S. Excavated Rh nanobranches boost ethanol electro-oxidation. Mater. Today Energy 2019, 11, 120–127.

52

Li, H. Q.; Ye, J. Y.; Li, X. M.; Zhang, J. W.; Zhu, Y. F.; Zhou, Z. Y.; Xue, Y. K.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Excavated RhNi alloy nanobranches enable superior CO-tolerance and CO2 selectivity at low potentials toward ethanol electro-oxidation. J. Mater. Chem. A 2019, 7, 26266–26271.

53

Lv, F.; Zhang, W. Y.; Sun, M. Z.; Lin, F. X.; Wu, T.; Zhou, P.; Yang, W. X.; Gao, P.; Huang, B. L.; Guo, S. J. Au clusters on Pd nanosheets selectively switch the pathway of ethanol electrooxidation: Amorphous/crystalline interface matters. Adv. Energy Mater. 2021, 11, 2100187.

54

Yang, X. B.; Liang, Z. P.; Chen, S.; Ma, M. J.; Wang, Q.; Tong, X. L.; Zhang, Q. H.; Ye, J. Y.; Gu, L.; Yang, N. J. A phosphorus-doped Ag@Pd catalyst for enhanced C–C bond cleavage during ethanol electrooxidation. Small 2020, 16, 2004727.

55

Lan, B.; Huang, M.; Wei, R. L.; Wang, C. N.; Wang, Q. L.; Yang, Y. Y. Ethanol electrooxidation on rhodium-lead catalysts in alkaline media: High mass activity, long-term durability, and considerable CO2 selectivity. Small 2020, 16, 2004380.

56

Wang, M. C.; Ding, R. M.; Xiao, Y. C.; Wang, H. X.; Wang, L. C.; Chen, C. M.; Mu, Y. W.; Wu, G. P.; Lv, B. L. CoP/RGO-Pd hybrids with heterointerfaces as highly active catalysts for ethanol electrooxidation. ACS Appl. Mater. Interfaces 2020, 12, 28903–28914.

57

Han, S. H.; Liu, H. M.; Chen, P.; Jiang, J. X.; Chen, Y. Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation. Adv. Energy Mater. 2018, 8, 1801326.

58

Liang, Z. X.; Song, L.; Deng, S. Q.; Zhu, Y. M.; Stavitski, E.; Adzic, R. R.; Chen, J. Y.; Wang, J. X. Direct 12-electron oxidation of ethanol on a ternary Au(core)–PtIr(shell) electrocatalyst. J. Am. Chem. Soc. 2019, 141, 9629–9636.

59

Miao, B.; Wu, Z. P.; Xu, H.; Zhang, M. H.; Chen, Y. F.; Wang, L. C. Ir catalysts: Preventing CH3COOH formation in ethanol oxidation. Chem. Phys. Lett. 2017, 688, 92–97.

File
12274_2021_4062_MOESM1_ESM.pdf (4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 September 2021
Revised: 15 November 2021
Accepted: 08 December 2021
Published: 24 February 2022
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21908036), the China Postdoctoral Science Foundation (No. 2019M662143), the Natural Science Foundation of Anhui Province (No. 2008085QB74), and the Fundamental Research Funds for the Central Universities (No. JZ2021HGTB0116).

Return