Journal Home > Volume 15 , Issue 5

A facile way to grow few-layer graphene on high-entropy alloy sheets is presented in this work. We systematically investigate the growth mechanism of graphene using the unique properties of FeCoNiCu0.25 high-entropy alloys. The intrinsic-trap-regulating growth mechanism derives from the synergistic effect of the multi-metal atoms and sluggish diffusion of high-entropy alloy. As a result, as-obtained few-layer of graphene has the characteristics of wide coverage, large size, good continuity, and high crystallinity with less amorphous carbon and extra wrinkles. Factors such as the Cu content, annealing time, growth temperature, growth time, carbon source flow rate, hydrogen flow rate and heat treatment method play a key role in the growth of high-quality graphene, and the best growth parameters have been explored. Besides, increasing alloy entropy is found to be responsible for the formation of high-quality graphene.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Intrinsic-trap-regulating growth of clean graphene on high-entropy alloy substrate

Show Author's information Ning Cao1Peng Liu1Jialiang Pan2Liheng Liang1Kunpeng Cai1Qingguo Shao1Hongwei Zhu2( )Xiaobei Zang1( )
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Abstract

A facile way to grow few-layer graphene on high-entropy alloy sheets is presented in this work. We systematically investigate the growth mechanism of graphene using the unique properties of FeCoNiCu0.25 high-entropy alloys. The intrinsic-trap-regulating growth mechanism derives from the synergistic effect of the multi-metal atoms and sluggish diffusion of high-entropy alloy. As a result, as-obtained few-layer of graphene has the characteristics of wide coverage, large size, good continuity, and high crystallinity with less amorphous carbon and extra wrinkles. Factors such as the Cu content, annealing time, growth temperature, growth time, carbon source flow rate, hydrogen flow rate and heat treatment method play a key role in the growth of high-quality graphene, and the best growth parameters have been explored. Besides, increasing alloy entropy is found to be responsible for the formation of high-quality graphene.

Keywords: graphene, chemical vapor deposition, high-entropy alloys

References(51)

1

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

2

Bolotina, K. I.; Sikes, K. J.; Jiang, Z.; Klim, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

3

Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.

4

Huang, Y. J.; Wan, C. L. Controllable fabrication and multifunctional applications of graphene/ceramic composites. J. Adv. Ceram. 2020, 9, 271–291.

5

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

6

Lin, L.; Zhang, J. C.; Su, H. S.; Li, J. Y.; Sun, L. Z.; Wang, Z. H.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y. H. Towards super-clean graphene. Nat. Commun. 2019, 10, 1912.

7

Luo, D.; Wang, M. H.; Li, Y. Q.; Kim, C.; Yu, K. M.; Kim, Y.; Han, H. J.; Biswal, M.; Huang, M.; Kwon, Y. et al. Adlayer-free large-area single crystal graphene grown on a Cu (111) Foil. Adv. Mater. 2019, 31, 1903615.

8

Liu, N.; Fu, L.; Dai, B. Y.; Yan, K.; Liu, X.; Zhao, R. Q.; Zhang, Y. F.; Liu, Z. F. Universal segregation growth approach to wafer-size graphene from non-noble metals. Nano Lett. 2011, 11, 297–303.

9

Choi, J. S.; Kim, J. S.; Byun, I. S.; Lee, D. H.; Lee, M. J.; Park, B. H.; Lee, C.; Yoon, D.; Cheong, H.; Lee, K. H. et al. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene. Science 2011, 333, 607–610.

10

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

11

Bluhm, H.; Hävecker, M.; Knop-Gericke, A.; Kleimenov, E.; Schlögl, R.; Teschner, D.; Bukhtiyarov, V. I.; Ogletree, D. F.; Salmeron, M. Methanol oxidation on a copper catalyst investigated using in situ X-ray photoelectron spectroscopy. J. Phys. Chem. B. 2004, 108, 14340–14347.

12

Schedel-Niedrig, T.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R. Partial methanol oxidation over copper: Active sites observed by means of in situ X-ray absorption spectroscopy. Phys. Chem. Chem. Phys. 2000, 2, 3473–3481.

13

Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; Van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 2017, 356, 523–527.

14

Zhang, Y. H.; Zhang, H. R.; Li, F.; Shu, H. B.; Chen, Z. Y.; Sui, Y. P.; Zhang, Y.; Ge, X. M.; Yu, G. H.; Jin, Z. et al. Invisible growth of microstructural defects in graphene chemical vapor deposition on copper foil. Carbon 2016, 96, 237–242.

15

Menzies, I. A.; Strafford, K. N. The scaling of binary alloys of titanium containing 5 wt.% of aluminium, copper, or cobalt in carbon dioxide at 1,000 °C. J. Less Common Met. 1967, 12, 85–106.

16

Sung, C. M.; Tai, M. F. Reactivities of transition metals with carbon: Implications to the mechanism of diamond synthesis under high pressure. Int. J. Refarct. Met. Hard Mater. 1997, 15, 237–256.

17

Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.

18

Zhang, Y.; Gomez, L.; Ishikawa, F. N.; Madaria, A.; Ryu, K.; Wang, C.; Badmaev, A.; Zhou, C. W. Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J. Phys. Chem. Lett. 2010, 1, 3101–3107.

19

Braeuninger-Weimer, P.; Brennan, B.; Pollard, A. J.; Hofmann, S. Understanding and controlling Cu-catalyzed graphene nucleation: The role of impurities, roughness, and oxygen scavenging. Chem. Mater. 2016, 28, 8905–8915.

20

Chen, S. S.; Cai, W. W.; Piner, R. D.; Suk, J. W.; Wu, Y. P.; Ren, Y. J.; Kang, J.; Ruoff, R. S. Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils. Nano Lett. 2011, 11, 3519–3525.

21

Dai, B. Y.; Fu, L.; Zou, Z. Y.; Wang, M.; Xu, H. T.; Wang, S.; Liu, Z. F. Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat. Commun. 2011, 2, 522.

22

Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.

23

Tsai, K. Y.; Tsai, M. H.; Yeh, J. W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897.

24

Guo, S.; Liu, C. T. Phase stability in high entropy alloys: Formation of solid−solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 2011, 21, 433–446.

25

Lander, J. J.; Kern, H. E.; Beach, A. L. Solubility and diffusion coefficient of carbon in nickel: Reaction rates of nickel-carbon alloys with barium oxide. J. Appl. Phys. 1952, 23, 1305–1309.

26

Cai, J. M.; Pignedoli, C. A.; Talirz, L.; Ruffieux, P.; Söde, H.; Liang, L. B.; Meunier, V.; Berger, R.; Li, R. J.; Feng, X. L. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2014, 9, 896–900.

27

Luo, Z. T.; Lu, Y.; Singer, D. W.; Berck, M. E.; Somers, L. A.; Goldsmith, B. R.; Johnson, A. T. C. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem. Mater. 2011, 23, 1441–1447.

28

Lee, K.; Ye, J. Significantly improved thickness uniformity of graphene monolayers grown by chemical vapor deposition by texture and morphology control of the copper foil substrate. Carbon 2016, 100, 441–449.

29

Hedayat, S. M.; Karimi-Sabet, J.; Shariaty-Niassar, M. Evolution effects of the copper surface morphology on the nucleation density and growth of graphene domains at different growth pressures. Appl. Surf. Sci. 2017, 399, 542–550.

30

Lu, L. Q.; De Hosson, J. T. M.; Pei, Y. T. Low-temperature synthesis of large-area graphene-based carbon films on Ni. Mater. Des. 2018, 144, 245–255.

31

Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.

32

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

33

Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 2013, 342, 720–723.

34

Sun, Z. Z.; Raji, A. R. O.; Zhu, Y.; Xiang, C. S.; Yan, Z.; Kittrell, C.; Samuel, E. L. G.; Tour, J. M. Large-area bernal-stacked Bi-, Tr-, and tetralayer graphene. ACS Nano 2012, 6, 9790–9796.

35

Chen, Q.; Song, Q. Y.; Yi, X.; Chen, Q.; Wu, W. J.; Huang, M. R.; Zhao, C. W.; Wang, S.; Zhu, H. W. High-quality bilayer graphene grown on softened copper foils by atmospheric pressure chemical vapor deposition. Sci. China Mater. 2020, 63, 1973–1982.

36

Chen, Q.; Yi, X.; Huang, M. R.; Wu, W. J.; Song, Q. Y.; Nie, C. J.; Wang, S.; Zhu, H. W. Sustained and controlled release of volatile precursors for chemical vapor deposition of graphene at atmospheric pressure. Chem. −Eur. J. 2020, 26, 7463–7469.

37

Li, D. Y.; Li, C. X.; Feng, T.; Zhang, Y. D.; Sha, G.; Lewandowski, J. J.; Liaw, P. K.; Zhang, Y. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater. 2017, 123, 285–294.

38

Senkov, O. N.; Senkova, S. V.; Miracle, D. B.; Woodward, C. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system. Mater. Sci. Eng. A 2013, 565, 51–62.

39

Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158.

40

Ye, Y. F.; Wang, Q.; Lu, J.; Liu, C. T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362.

41

Liu, W.; Li, H.; Xu, C.; Khatami, Y.; Banerjee, K. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 2011, 49, 4122–4130.

42

Sun, H. B.; Wu, J.; Han, Y.; Wang, J. Y.; Song, F. Q.; Wan, J. G. Nonisothermal synthesis of AB-stacked bilayer graphene on Cu foils by atmospheric pressure chemical vapor deposition. J. Phys. Chem. C 2014, 118, 14655–14661.

43

Xue, Y. Z.; Wu, B.; Guo, Y. L.; Huang, L. P.; Jiang, L.; Chen, J. Y.; Geng, D. C.; Liu, Y. Q.; Hu, W. P.; Yu, G. Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Res. 2011, 4, 1208–1214.

44

Ramon, M. E.; Gupta, A.; Corbet, C.; Ferrer, D. A.; Movva, H. C. P.; Carpenter, G.; Colombo, L.; Bourianoff, G.; Doczy, M.; Akinwande, D. et al. CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano 2011, 5, 7198–7204.

45
Chae, S. J.; Günes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H. et al. Synthesis of large-area graphene layers on nickel film by chemical vapor deposition: Wrinkle formation. In Proceedings of SPIE 7399, Carbon Nanotubes, Graphene, and Associated Devices II, San Diego, USA, 2009, pp 73990W.
46

Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829.

47

Liu, K.; Ren, E. Z.; Ma, J.; Cao, Y.; Du, J. G.; Ming, W. Y.; Li, X. K.; Li, B. Controllable preparation of graphene-based film deposited on cemented carbides by chemical vapor deposition. J. Mater. Sci. 2020, 55, 4251–4264.

48

Li, X. Q.; Tian, F. Y.; Schönecker, S.; Zhao, J. J.; Vitos, L. Ab initio-predicted micro-mechanical performance of refractory high-entropy alloys. Sci. Rep. 2015, 5, 12334.

49

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

50

Huang, M.; Biswal, M.; Park, H. J.; Jin, S.; Qu, D.; Hong, S.; Zhu, Z. L.; Qiu, L.; Luo, D.; Liu, X. C. et al. Highly oriented monolayer graphene grown on a Cu/Ni (111) alloy foil. ACS Nano 2018, 12, 6117–6127.

51

Singh Raman, R. K.; Chakraborty Banerjee, P.; Lobo, D. E.; Gullapalli, H.; Sumandasa, M.; Kumar, A.; Choudhary, L.; Tkacz, R.; Ajayan, P. M.; Majumder, M. Protecting copper from electrochemical degradation by graphene coating. Carbon 2012, 50, 4040–4045.

File
12274_2021_4061_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 October 2021
Revised: 22 November 2021
Accepted: 08 December 2021
Published: 27 January 2022
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21905304), Natural Science Foundation of Shandong Province (No. ZX20210028), and the Fundamental Research Funds for the Central Universities (No. 19CX05001A).

Return