Journal Home > Volume 15 , Issue 5

VS2 with natural layered structure and metallic conductivity is a prospective candidate for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). However, due to large radius of Na+ and K+, the limited interlayer spacing (0.57 nm) of VS2 generally determines high ion diffusion barrier and large volume variation, resulting in unsatisfactory electrochemical performance of SIBs and PIBs. In this work, flower-like VS2/N-doped carbon (VS2/N-C) with expanded (001) plane is grown on reduced graphene oxide (rGO) via a solvothermal and subsequently carbonization strategy. In the VS2/N-C@rGO nanohybrids, the ultrathin VS2 “ petals” are alternately intercalated by the N-doped porous carbon monolayers to achieve an expanded interlayer spacing (1.02 nm), which can effectively reduce ions diffusion barrier, expose abundant active sites for Na+/K+ intercalation, and tolerate large volume variation. The N-C and rGO carbonous materials can significantly promote the electrical conductivity and structural stability. Benefited from the synergistic effect, the VS2/N-C@rGO electrode exhibits large reversible capacity (Na+: 407 mAh·g−1 at 1 A·g−1; K+: 334 mAh·g−1 at 0.2 A·g−1), high rate capacity (Na+: 273 mAh·g−1 at 8 A·g−1; K+: 186 mAh·g−1 at 5 A·g−1), and remarkable cycling stability (Na+: 316 mAh·g−1 at 2 A·g−1 after 1,400 cycles; K+: 216 mAh·g−1 at 1 A·g−1 after 500 cycles).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Assembly of flower-like VS2/N-doped porous carbon with expanded (001) plane on rGO for superior Na-ion and K-ion storage

Show Author's information Junwei Sun1Gang Lian1( )Laiying Jing2Di Wu1Deliang Cui1Qilong Wang3Haohai Yu1( )Huaijin Zhang1Ching-Ping Wong4
State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
Key Laboratory for Special Functional Aggregated Materials of Education Ministry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Abstract

VS2 with natural layered structure and metallic conductivity is a prospective candidate for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). However, due to large radius of Na+ and K+, the limited interlayer spacing (0.57 nm) of VS2 generally determines high ion diffusion barrier and large volume variation, resulting in unsatisfactory electrochemical performance of SIBs and PIBs. In this work, flower-like VS2/N-doped carbon (VS2/N-C) with expanded (001) plane is grown on reduced graphene oxide (rGO) via a solvothermal and subsequently carbonization strategy. In the VS2/N-C@rGO nanohybrids, the ultrathin VS2 “ petals” are alternately intercalated by the N-doped porous carbon monolayers to achieve an expanded interlayer spacing (1.02 nm), which can effectively reduce ions diffusion barrier, expose abundant active sites for Na+/K+ intercalation, and tolerate large volume variation. The N-C and rGO carbonous materials can significantly promote the electrical conductivity and structural stability. Benefited from the synergistic effect, the VS2/N-C@rGO electrode exhibits large reversible capacity (Na+: 407 mAh·g−1 at 1 A·g−1; K+: 334 mAh·g−1 at 0.2 A·g−1), high rate capacity (Na+: 273 mAh·g−1 at 8 A·g−1; K+: 186 mAh·g−1 at 5 A·g−1), and remarkable cycling stability (Na+: 316 mAh·g−1 at 2 A·g−1 after 1,400 cycles; K+: 216 mAh·g−1 at 1 A·g−1 after 500 cycles).

Keywords: sodium-ion batteries, expanded interlayer spacing, potassium-ion batteries, N-doped porous carbon, VS2, graphene substrate

References(59)

1

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

2

Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

3

Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 2018, 28, 1802938.

4

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

5

Wu, Y.; Yu, Y. 2D material as anode for sodium ion batteries: Recent progress and perspectives. Energy Storage Mater. 2019, 16, 323–343.

6

Min, X.; Xiao, J.; Fang, M. H.; Wang, W.; Zhao, Y. J.; Liu, Y. A.; Abdelkader, A. M.; Xi, K.; Kumar, R. V.; Huang, Z. H. Potassium-ion batteries: Outlook on present and future technologies. Energy Environ. Sci. 2021, 14, 2186–2243.

7

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

8

Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

9

Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888.

10

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

11

Yun, Q. B.; Li, L. X.; Hu, Z. N.; Lu, Q. P.; Chen, B.; Zhang, H. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv. Mater. 2020, 32, 1903826.

12

Chen, B.; Chao, D. L.; Liu, E. Z.; Jaroniec, M.; Zhao, N. Q.; Qiao, S. Z. Transition metal dichalcogenides for alkali metal ion batteries: Engineering strategies at the atomic level. Energy Environ. Sci. 2020, 13, 1096–1131.

13

Feng, J.; Sun, X.; Wu, C. Z.; Peng, L. L.; Lin, C. W.; Hu, S. L.; Yang, J. L.; Xie, Y. Metallic few-layered VS2 ultrathin nanosheets : High two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832–17838.

14

Ji, Q. Q.; Li, C.; Wang, J. L.; Niu, J. J.; Gong, Y.; Zhang, Z. P.; Fang, Q. Y.; Zhang, Y.; Shi, J. P.; Liao, L. et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett. 2017, 17, 4908–4916.

15

Putungan, D. B.; Lin, S. H.; Kuo, J. L. Metallic VS2 monolayer polytypes as potential sodium-ion battery anode via ab initio random structure searching. ACS Appl. Mater. Interfaces 2016, 8, 18754–18762.

16

Rout, C. S.; Kim, B. H.; Xu, X. D.; Yang, J.; Jeong, H. Y.; Odkhuu, D.; Park, N.; Cho, J.; Shin, H. S. Synthesis and characterization of patronite form of vanadium sulfide on graphitic layer. J. Am. Chem. Soc. 2013, 135, 8720–8725.

17

Li, W. B.; Sari, H. M. K.; Li, X. F. Emerging layered metallic vanadium disulfide for rechargeable metal-ion batteries: Progress and opportunities. ChemSusChem 2020, 13, 1172–1202.

18

Xu, X. M.; Xiong, F. Y.; Meng, J. S.; Wang, X. P.; Niu, C. J.; An, Q. Y.; Mai, L. Q. Vanadium-based nanomaterials: A promising family for emerging metal-ion batteries. Adv. Funct. Mater. 2020, 30, 1904398.

19

Zhao, Y. Y.; Yang, D.; He, T. Q.; Li, J. H.; Wei, L. Y.; Wang, D. S.; Wang, Y. Z.; Wang, X. D.; Chen, G.; Wei, Y. J. Vacancy engineering in VS2 nanosheets for ultrafast pseudocapacitive sodium ion storage. Chem. Eng. J. 2021, 421, 129715.

20

Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

21

Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.

22

Ji, X.; Xu, K.; Chen, C.; Zhang, B.; Wan, H. Z.; Ruan, Y. J.; Miao, L.; Jiang, J. J. Different charge-storage mechanisms in disulfide vanadium and vanadium carbide monolayer. J. Mater. Chem. A 2015, 3, 9909–9914.

23

Zhang, Y. F.; Ang, E. H.; Yang, Y.; Ye, M. H.; Du, W. C.; Li, C. C. Interlayer chemistry of layered electrode materials in energy storage devices. Adv. Funct. Mater. 2021, 31, 2007358.

24

Sun, J. W.; Jiao, S. L.; Lian, G.; Jing, L. Y.; Cui, D. L.; Wang, Q. L.; Wong, C. P. Hierarchical MoS2/m-C@a-C@Ti3C2 nanohybrids as superior electrodes for enhanced sodium storage and hydrogen evolution reaction. Chem. Eng. J. 2021, 421, 129680.

25

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Kong, W. H.; Lin, H. N.; Wang, L.; Jin, Z. One-step synthesis of 2-ethylhexylamine pillared vanadium disulfide nanoflowers with ultralarge interlayer spacing for high-performance magnesium storage. Adv. Energy Mater. 2019, 9, 1900145.

26

Hu, X.; Liu, Y. J.; Li, J. W.; Wang, G. X.; Chen, J. X.; Zhong, G. B.; Zhan, H. B.; Wen, Z. H. Self-assembling of conductive interlayer-expanded WS2 nanosheets into 3D hollow hierarchical microflower bud hybrids for fast and stable sodium storage. Adv. Funct. Mater. 2020, 30, 1907677.

27

Jing, L. Y.; Lian, G.; Niu, F. E.; Yang, J.; Wang, Q. L.; Cui, D. L.; Wong, C. P.; Liu, X. Z. Few-atomic-layered hollow nanospheres constructed from alternate intercalation of carbon and MoS2 monolayers for sodium and lithium storage. Nano Energy 2018, 51, 546–555.

28

Li, S. W.; Liu, Y. C.; Zhao, X. D.; Shen, Q. Y.; Zhao, W.; Tan, Q. W.; Zhang, N.; Li, P.; Jiao, L. F.; Qu, X. H. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater. 2021, 33, 2007480.

29

Jia, B. R.; Yu, Q. Y.; Zhao, Y. Z.; Qin, M. L.; Wang, W.; Liu, Z. W.; Lao, C. Y.; Liu, Y.; Wu, H. W.; Zhang, Z. L. et al. Bamboo-like hollow tubes with MoS2/N-doped-c interfaces boost potassium-ion storage. Adv. Funct. Mater. 2018, 28, 1803409.

30

Yang, W. J.; Luo, N. J.; Zheng, C.; Huang, S. P.; Wei, M. D. Hierarchical composite of rose-like VS2@S/N-doped carbon with expanded (001) planes for superior Li-Ion storage. Small 2019, 15, 1903904.

31

Czerw, R.; Terrones, M.; Charlier, J. C.; Blase, X.; Foley, B.; Kamalakaran, R.; Grobert, N.; Terrones, H.; Tekleab, D.; Ajayan, P. M. et al. Identification of electron donor states in N-doped carbon nanotubes. Nano Lett. 2001, 1, 457–460.

32

Shui, J. L.; Wang, M.; Du, F.; Dai, L. M. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci. Adv. 2015, 1, e1400129.

33

Huang, Z. Y.; Han, X. Y.; Cui, X.; He, C. G.; Zhang, J. L.; Wang, X. G.; Lin, Z. Q.; Yang, Y. K. Vertically aligned VS2 on graphene as a 3D heteroarchitectured anode material with capacitance-dominated lithium storage. J. Mater. Chem. A 2020, 8, 5882–5889.

34

Wang, J.; Lian, G.; Si, H. B.; Wang, Q. L.; Cui, D. L.; Wong, C. P. Pressure-induced oriented attachment growth of large-size crystals for constructing 3D ordered superstructures. ACS Nano 2016, 10, 405–412.

35

Mourdikoudis, S.; Liz-Marzán, L. M. Oleylamine in nanoparticle synthesis. Chem. Mater. 2013, 25, 1465–1476.

36

Zhang, J. J.; Zhang, C. H.; Wang, Z. Y.; Zhu, J.; Wen, Z. W.; Zhao, X. Z.; Zhang, X. X.; Xu, J.; Lu, Z. G. Synergistic interlayer and defect engineering in VS2 nanosheets toward efficient electrocatalytic hydrogen evolution reaction. Small 2018, 14, 1703098.

37

Zhou, J. H.; Wang, L.; Yang, M. Y.; Wu, J. H.; Chen, F. J.; Huang, W. J.; Han, N.; Ye, H. L.; Zhao, F. P.; Li, Y. Y. et al. Hierarchical VS2 nanosheet assemblies: A universal host material for the reversible storage of alkali metal ions. Adv. Mater. 2017, 29, 1702061.

38

Liu, Y.; Sun, Z. H.; Sun, X.; Lin, Y.; Tan, K.; Sun, J. F.; Liang, L. W.; Hou, L. R.; Yuan, C. Z. Construction of hierarchical nanotubes assembled from ultrathin V3S4@C Nanosheets towards alkali-ion batteries with ion-dependent electrochemical mechanisms. Angew. Chem., Int. Ed. 2020, 59, 2473–2482.

39

Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. New two-dimensional niobium and vanadium carbides as promising materials for Li-Ion batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969.

40

Wu, D. X.; Wang, C. Y.; Wu, M. G.; Chao, Y. F.; He, P. B.; Ma, J. M. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J. Energy Chem. 2020, 43, 24–32.

41

Wu, C. H.; Ou, J. Z.; He, F. Y.; Ding, J. F.; Luo, W.; Wu, M. H.; Zhang, H. J. Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability. Nano Energy 2019, 65, 104061.

42

Wu, K.; Cao, X.; Li, M. Y.; Lei, B.; Zhan, J.; Wu, M. H. Bottom-up synthesis of MoS2/CNTs hollow polyhedron with 1T/2H hybrid phase for superior potassium-ion storage. Small 2020, 16, 2004178.

43

Ma, L.; Li, Z. B.; Li, J. L.; Dai, Y.; Qian, C.; Zhu, Y. F.; Wang, H.; Hui, K. N.; Pan, L. K.; Amin, M. A. et al. Phytic acid-induced nitrogen configuration adjustment of active nitrogen-rich carbon nanosheets for high-performance potassium-ion storage. J. Mater. Chem. A 2021, 9, 25445–25452.

44

Xu, D. M.; Wang, H. W.; Qiu, R. Y.; Wang, Q.; Mao, Z. F.; Jiang, Y. J.; Wang, R.; He, B. B.; Gong, Y. S.; Li, D. B. et al. Coupling of bowl-like VS2 nanosheet arrays and carbon nanofiber enables ultrafast Na+-storage and robust flexibility for sodium-ion hybrid capacitors. Energy Storage Mater. 2020, 28, 91–100.

45

Li, W. B.; Huang, J. F.; Feng, L. L.; Cao, L. Y.; Feng, Y. Q.; Wang, H. J.; Li, J. Y.; Yao, C. Y. Facile In situ synthesis of crystalline VOOH-coated VS2 microflowers with superior sodium storage performance. J. Mater. Chem. A 2017, 5, 20217–20227.

46

Yu, D. X.; Pang, Q.; Gao, Y.; Wei, Y. J.; Wang, C. Z.; Chen, G.; Du, F. Hierarchical flower-like VS2 nanosheets-a high rate-capacity and stable anode material for sodium-ion battery. Energy Storage Mater. 2018, 11, 1–7.

47

Muller, G. A.; Cook, J. B.; Kim, H. S.; Tolbert, S. H.; Dunn, B. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 2015, 15, 1911–1917.

48

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

49

Zhang, K.; Park, M.; Zhou, L. M.; Lee, G. H.; Shin, J.; Hu, Z.; Chou, S. L.; Chen, J.; Kang, Y. M. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 12822–12826.

50

Ge, P.; Hou, H. S.; Cao, X. Y.; Li, S. J.; Zhao, G. G.; Guo, T. X.; Wang, C.; Ji, X. B. Multidimensional evolution of carbon structures underpinned by temperature-induced intermediate of chloride for sodium-ion batteries. Adv. Sci. 2018, 5, 1800080.

51

Ren, W. N.; Zhang, H. F.; Guan, C.; Cheng, C. W. Ultrathin MoS2 Nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv. Funct. Mater. 2017, 27, 1702116.

52

Li, L. J.; Chen, Z. Y.; Zhang, Q. B.; Xu, M.; Zhou, X.; Zhu, H. L.; Zhang, K. L. A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. J. Mater. Chem. A 2015, 3, 894–904.

53

Zhang, X.; He, Q.; Xu, X. M.; Xiong, T. F.; Xiao, Z. T.; Meng, J. S.; Wang, X. P.; Wu, L.; Chen, J. H.; Mai, L. Q. Insights into the storage mechanism of layered VS2 cathode in alkali metal-ion batteries. Adv. Energy Mater. 2020, 10, 1904118.

54

Luo, B.; Wu, P.; Zhang, J. F.; Cao, L.; Wang, C. H.; Lu, B.; Zhang, B.; Ou, X. Van Der Waals heterostructure engineering by 2D space-confinement for advanced potassium-ion storage. Nano Res. 2021, 14, 3854–3863.

55

Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.

56

Chen, J. G.; Tang, Z.; Pan, Z. Y.; Shi, W. P.; Wang, Y. Q.; Tian, Z. Q.; Shen, P. K. Template-free growth of spherical vanadium disulfide nanoflowers as efficient anodes for sodium/potassium ion batteries. Mater. Des. 2020, 192, 108780.

57

Xie, J. P.; Li, X. D.; Lai, H. J.; Zhao, Z. J.; Li, J. L.; Zhang, W. G.; Xie, W. G.; Liu, Y. M.; Mai, W. J. A robust solid electrolyte interphase layer augments the ion storage capacity of bimetallic-sulfide-containing potassium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 14740–14747.

58

Li, J. L.; Zhuang, N.; Xie, J. P.; Li, X. D.; Zhuo, W. C.; Wang, H.; Na, J. B.; Li, X. B.; Yamauchi, Y.; Mai, W. J. K-ion storage enhancement in Sb2O3/reduced graphene oxide using ether-based electrolyte. Adv. Energy Mater. 2020, 10, 1903455.

59

Duan, W. C.; Zhu, Z. Q.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F. Y.; Chen, J. Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2014, 2, 8668–8675.

File
12274_2021_4060_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 October 2021
Revised: 23 November 2021
Accepted: 08 December 2021
Published: 02 February 2022
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors are grateful to the National Key Research and Development Project (No. 51890863), the National Natural Science Foundation of China (NSFC, Nos. 51872172 and 51972197), the Natural Science Foundation of Shandong Province (Nos. ZR2018MEM010 and ZR2019MEM021), Major Research and Development Program for Public Welfare in Shandong (No. 2018GGX102021), and Young Scholars Program of Shandong University.

Return