Journal Home > Volume 15 , Issue 6

Combining multiple metal elements into one nanostructure merits untold application potential but is still a challenge for the traditional bottom-up synthesis method. Herein, we propose a eutectic-directed self-templating strategy to prepare two multi-component nanostructured alloys (PtPdRhIrNi (D-SN) and NiPtPdRhIrAl (D-SS)) through the combination of rapid solidification with dealloying. The PtPdRhIrNi nanoporous nanowires (NPNWs) represent a new family of high-entropy alloys (HEAs) containing delicate hierarchical nanostructure with ultrafine ligament sizes of ~ 2 nm in addition to one-dimensional (1D) morphology. Moreover, the PtPdRhIrNi NPNWs display excellent electrocatalytic activity and stability toward hydrogen evolution reaction, with the low overpotential of 22 and 55 mV to afford a current density of 10 mA·cm−2 in 0.5 M H2SO4 and 1.0 M KOH electrolytes, respectively. The enhanced electrocatalytic performance can be attributed to the high-entropy effect favoring the surface electronic structure for the optimized activity, the promotion impact of Ni, 1D morphology facilitating the electron transport, and the nanoporous structure promoting the electrolyte diffusion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Eutectic-derived high-entropy nanoporous nanowires for efficient and stable water-to-hydrogen conversion

Show Author's information Ying Wang1,2Bin Yu2Ming He1Zhihua Zhai2Kuibo Yin3( )Fangong Kong1Zhonghua Zhang2( )
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China

Abstract

Combining multiple metal elements into one nanostructure merits untold application potential but is still a challenge for the traditional bottom-up synthesis method. Herein, we propose a eutectic-directed self-templating strategy to prepare two multi-component nanostructured alloys (PtPdRhIrNi (D-SN) and NiPtPdRhIrAl (D-SS)) through the combination of rapid solidification with dealloying. The PtPdRhIrNi nanoporous nanowires (NPNWs) represent a new family of high-entropy alloys (HEAs) containing delicate hierarchical nanostructure with ultrafine ligament sizes of ~ 2 nm in addition to one-dimensional (1D) morphology. Moreover, the PtPdRhIrNi NPNWs display excellent electrocatalytic activity and stability toward hydrogen evolution reaction, with the low overpotential of 22 and 55 mV to afford a current density of 10 mA·cm−2 in 0.5 M H2SO4 and 1.0 M KOH electrolytes, respectively. The enhanced electrocatalytic performance can be attributed to the high-entropy effect favoring the surface electronic structure for the optimized activity, the promotion impact of Ni, 1D morphology facilitating the electron transport, and the nanoporous structure promoting the electrolyte diffusion.

Keywords: high-entropy alloy, dealloying, electrocatalyst, hydrogen evolution reaction, nanoporous nanowires

References(48)

1

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, 146.

2

Li, H. D.; Han, Y.; Zhao, H.; Qi, W. J.; Zhang, D.; Yu, Y. D.; Cai, W. W.; Li, S. X.; Lai, J. P.; Huang, B. L. et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 2020, 11, 5437.

3

Glenk, G.; Reichelstein, S. Economics of converting renewable power to hydrogen. Nat. Energy 2019, 4, 216–222.

4

Batchelor, T. A. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019, 3, 834–845.

5

Wang, S. W.; Xin, H. L. Predicting catalytic activity of high-entropy alloys for electrocatalysis. Chem 2019, 5, 502–504.

6

Nellaiappan, S.; Katiyar, N. K.; Kumar, R.; Parui, A.; Malviya, K. D.; Pradeep, K. G.; Singh, A. K.; Sharma, S.; Tiwary, C. S.; Biswas, K. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: Experimental realization. ACS Catal. 2020, 10, 3658–3663.

7

Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.

8

Ren, X. F.; Lv, Q. Y.; Liu, L. F.; Liu, B. H.; Wang, Y. R.; Liu, A. M.; Wu, G. Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustainable Energy Fuels 2020, 4, 15–30.

9

Li, S. Y.; Tang, X. W.; Jia, H. L.; Li, H. L.; Xie, G. Q.; Liu, X. J.; Lin, X.; Qiu, H. J. Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. J. Catal. 2020, 383, 164–171.

10

Huang, X. Y.; Wang, A. J.; Zhang, L.; Fang, K. M.; Wu, L. J.; Feng, J. J. Melamine-assisted solvothermal synthesis of PtNi nanodentrites as highly efficient and durable electrocatalyst for hydrogen evolution reaction. J. Colloid Interface Sci. 2018, 531, 578–584.

11

Xu, J. Y.; Li, J. J.; Xiong, D. H.; Zhang, B. S.; Liu, Y. F.; Wu, K. H.; Amorim, I.; Li, W.; Liu, L. F. Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide pre-catalysts. Chem. Sci. 2018, 9, 3470–3476.

12

Tomboc, G. M.; Kwon, T.; Joo, J.; Lee, K. High entropy alloy electrocatalysts: A critical assessment of fabrication and performance. J. Mater. Chem. A 2020, 8, 14844–14862.

13

Antolini, E.; Salgado, J. R. C.; Gonzalez, E. R. The methanol oxidation reaction on platinum alloys with the first row transition metals: The case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: A short review. Appl. Catal. B:Environ. 2006, 63, 137–149.

14

He, J. F.; Johnson, N. J. J.; Huang, A. X.; Berlinguette, C. P. Electrocatalytic alloys for CO2 reduction. ChemSusChem 2018, 11, 48–57.

15

Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.

16

Qiu, H. J.; Fang, G.; Wen, Y. R.; Liu, P.; Xie, G. Q.; Liu, X. J.; Sun, S. H. Nanoporous high-entropy alloys for highly stable and efficient catalysts. J. Mater. Chem. A 2019, 7, 6499–6506.

17

Zou, Y.; Ma, H.; Spolenak, R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 2015, 6, 7748.

18

Ye, Y. F.; Wang, Q.; Lu, J.; Liu, C. T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362.

19

Wu, D. S.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Gueye, I.; Seo, O.; Kim, J.; Hiroi, S.; Sakata, O. et al. On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles. Chem. Sci. 2020, 11, 12731–12736.

20

Zhang, G. L.; Ming, K. S.; Kang, J. L.; Huang, Q.; Zhang, Z. J.; Zheng, X. R.; Bi, X. F. High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2018, 279, 19–23.

21

Yusenko, K. V.; Riva, S.; Carvalho, P. A.; Yusenko, M. V.; Arnaboldi, S.; Sukhikh, A. S.; Hanfland, M.; Gromilov, S. A. First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater. 2017, 138, 22–27.

22

Chen, P. C.; Liu, X. L.; Hedrick, J. L.; Xie, Z.; Wang, S. Z.; Lin, Q. Y.; Hersam, M. C.; Dravid, V. P.; Mirkin, C. A. Polyelemental nanoparticle libraries. Science 2016, 352, 1565–1569.

23

Chen, P. C.; Liu, G. L.; Zhou, Y.; Brown, K. A.; Chernyak, N.; Hedrick, J. L.; He, S.; Xie, Z.; Lin, Q. Y.; Dravid, V. P. et al. Tip-directed synthesis of multimetallic nanoparticles. J. Am. Chem. Soc. 2015, 137, 9167–9173.

24

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

25

Kakitani, R.; Reyes, R. V.; Garcia, A.; Spinelli, J. E.; Cheung, N. Relationship between spacing of eutectic colonies and tensile properties of transient directionally solidified Al-Ni eutectic alloy. J. Alloys Compd. 2018, 733, 59–68.

26

Pandey, P.; Makineni, S. K.; Gault, B.; Chattopadhyay, K. On the origin of a remarkable increase in the strength and stability of an Al rich Al-Ni eutectic alloy by Zr addition. Acta Mater. 2019, 170, 205–217.

27

Li, Q.; Wei, B.; Li, Y.; Xu, J. Y.; Li, J. J.; Liu, L. F.; Deepak, F. L. Large-scale fabrication of hollow Pt3Al nanoboxes and their electrocatalytic performance for hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 9842–9847.

28

Li, Q.; Li, J. J.; Xu, J. Y.; Zhang, N.; Li, Y. P.; Liu, L. F.; Pan, D.; Wang, Z. C.; Deepak, F. L. Ultrafine-grained porous Ir-based catalysts for high-performance overall water splitting in acidic media. ACS Appl. Energy Mater. 2020, 3, 3736–3744.

29

Cai, J.; Javed, R.; Ye, D. X.; Zhao, H. B.; Zhang, J. J. Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 22467–22487.

30

Li, C. Q.; Baek, J. B. Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega 2020, 5, 31–40.

31

Quinlan, K. P.; Hutta, J. J. Electrolytic preparation of Al3Ni fibers from the eutectic alloy, Al-Al3Ni. Mater. Res. Bull. 1980, 15, 707–714.

32

Xu, C. X.; Hou, J. G.; Pang, X. H.; Li, X. J.; Zhu, M. L.; Tang, B. Y. Nanoporous PtCo and PtNi alloy ribbons for methanol electrooxidation. Int. J. Hydrogen Energy 2012, 37, 10489–10498.

33

Wang, K. H.; Sun, K. L.; Yu, T. P.; Liu, X.; Wang, G. X.; Jiang, L. H.; Xie, G. W. Facile synthesis of nanoporous Ni-Fe-P bifunctional catalysts with high performance for overall water splitting. J. Mater. Chem. A 2019, 7, 2518–2523.

34

Cui, R. J.; Mei, L.; Han, G. J.; Chen, J. Y.; Zhang, G. H.; Quan, Y.; Gu, N.; Zhang, L.; Fang, Y.; Qian, B. et al. Facile synthesis of nanoporous Pt-Y alloy with enhanced electrocatalytic activity and durability. Sci. Rep. 2017, 7, 41826.

35

Song, Y. Y.; Zhang, X. L.; Yang, S.; Wei, X.; Sun, Z. B. Electrocatalytic performance for methanol oxidation on nanoporous Pd/NiO composites prepared by one-step dealloying. Fuel 2016, 181, 269–276.

36

Zhang, L. S.; Lu, J. J.; Yin, S. B.; Luo, L.; Jing, S. Y.; Brouzgou, A.; Chen, J. H.; Shen, P. K.; Tsiakaras, P. One-pot synthesized boron-doped RhFe alloy with enhanced catalytic performance for hydrogen evolution reaction. Appl. Catal. B:Environ. 2018, 230, 58–64.

37

Ke, Z. B.; Li, L. J.; Jia, Q. R.; Yang, Y. G.; Cui, H. W. Facile synthesis of jagged Au/Ir nanochains with superior electrocatalytic activity for oxygen evolution reaction. Appl. Surf. Sci. 2019, 463, 58–65.

38

Tian, X. L.; Luo, J. M.; Nan, H. X.; Zou, H. B.; Chen, R.; Shu, T.; Li, X. H.; Li, Y. W.; Song, H. Y.; Liao, S. J. et al. Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 2016, 138, 1575–1583.

39

Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

40

Li, L.; Wang, S.; Xiong, L. F.; Wang, B.; Yang, G.; Yang, S. C. Surface-engineered mesoporous Pt nanodendrites with Ni dopant for highly enhanced catalytic performance in hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 12800–12807.

41

Liu, S. J.; Zhang, X.; Zhang, J.; Lei, Z. G.; Liang, X.; Chen, B. H. MoS2 with tunable surface structure directed by thiophene adsorption toward HDS and HER. Sci. China Mater. 2016, 59, 1051–1061.

42

Nguyen, V. T.; Ha, H.; Nguyen, N. A.; An, H.; Kim, H. Y.; Choi, H. S. In situ engineering of Pd nanosponge armored with graphene dots using Br toward high-performance and stable electrocatalyst for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 15500–15506.

43

Ma, Y. F.; Chen, M.; Geng, H. B.; Dong, H. F.; Wu, P.; Li, X. M.; Guan, G. Q.; Wang, T. J. Synergistically tuning electronic structure of porous β-Mo2C spheres by Co doping and Mo-vacancies defect engineering for optimizing hydrogen evolution reaction activity. Adv. Funct. Mater. 2020, 30, 2000561.

44

Liu, R.; Gong, Z. C.; Liu, J. B.; Dong, J. C.; Liao, J. W.; Liu, H.; Huang, H. K.; Liu, J. J.; Yan, M. M.; Huang, K. et al. Design of aligned porous carbon films with single-atom Co-N-C sites for high-current-density hydrogen generation. Adv. Mater. 2021, 33, 2103533.

45

Cao, Z. M.; Chen, Q. L.; Zhang, J. W.; Li, H. Q.; Jiang, Y. Q.; Shen, S. Y.; Fu, G.; Lu, B. A.; Xie, Z. X.; Zheng, L. S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun. 2017, 8, 15131.

46

Cao, Z. M.; Li, H. Q.; Zhan, C. Y.; Zhang, J. W.; Wang, W.; Xu, B. B.; Lu, F.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Monocrystalline platinum-nickel branched nanocages with enhanced catalytic performance towards the hydrogen evolution reaction. Nanoscale 2018, 10, 5072–5077.

47

Wu, Y. H.; Gao, Y.; He, H. W.; Zhang, P. Electrodeposition of self-supported Ni-Fe-Sn film on Ni foam: An efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2019, 301, 39–46.

48

Gao, Y.; He, H. W.; Tan, W. Y.; Peng, Y. Z.; Dai, X. M.; Wu, Y. H. One-step potentiostatic electrodeposition of Ni-Se-Mo film on Ni foam for alkaline hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 6015–6023.

File
12274_2021_4059_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 October 2021
Revised: 22 November 2021
Accepted: 08 December 2021
Published: 31 December 2021
Issue date: June 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51871133 and 51901108), the Foundation of State Key Laboratory of Biobased Material and Green Papermaking (No. ZZ20210109), Qilu University of Technology (Shandong Academy of Sciences), the support of Taishan Scholar Foundation of Shandong Province, and the program of Jinan Science and Technology Bureau (No. 2019GXRC001). We also acknowledge the support of the Outstanding Youth Innovation Team Project of Shandong Provincial University (No. 2019KJC014).

Return