AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Stable and highly efficient perovskite solar cells: Doping hydrophobic fluoride into hole transport material PTAA

Chao Yu1Buyue Zhang1,2Chen Chen1Jintao Wang1,2Jian Zhang1( )Ping Chen1Chuannan Li1Yu Duan1( )
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
College of Science, Changchun University of Science and Technology, Changchun 130012, China
Show Author Information

Graphical Abstract

The perovskite solar cells with 35FP-doped have better performance (PCE = 20.45%) compared with undoped device (PCE = 14.11%). The 35FP-doped devices only fell by 20% of its original efficiency after 1,000 h under ambient conditions without encapsulation.

Abstract

Perovskite solar cells (PSCs) have rapidly developed in the past few years, with a record efficiency exceeding 25%. However, the long-term stability of PSCs remains a challenge and limits their practical application. Many high-performance PSCs have an n-i-p device architecture employing 4-tert-butylpyridine (t-BP) and bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI) as bi-dopants for the hole-transporting layer (HTL). However, the hygroscopicity of Li-TFSI and low boiling point of t-BP negatively impact the moisture stability of these PSC devices. Herein, we report the use of the fluorine-containing hydrophobic compound tris(pentafluorophenyl)phosphine (35FP) as a dopant for poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). With better hydrophobicity and stability than undoped PTAA, a PSC device containing 35FP-doped PTAA demonstrated improved charge transport properties and reduced trap density, leading to a significant enhancement in performance. In addition, the long-term stability of a 35FP-doped PTAA PSC under air exposure without encapsulation was demonstrated, with 80% of the initial device efficiency maintained for 1,000 h. This work provides a new approach for the fabrication of efficient and stable PSCs to explore hydrophobic dopants as a substitute for hydrophilic Li-TFSI/t-BP.

Electronic Supplementary Material

Download File(s)
12274_2021_4056_MOESM1_ESM.pdf (1.4 MB)

References

1

Bao, C.; Chen, C.; Muhammad, M.; Ma, X. J.; Wang, Z. K.; Liu, Y. F.; Chen, P.; Chen, S. M.; Liu, B.; Wang, J. T. et al. Hybrid perovskite charge generation layer for highly efficient tandem organic light-emitting diodes. Org. Electron. 2019, 73, 299–303.

2

Chen, S. M.; Chen, C.; Bao, C.; Mujahid, M.; Li, Y.; Chen, P.; Duan, Y. White light-emitting devices based on inorganic perovskite and organic materials. Molecules 2019, 24, 800.

3

Chen, C.; Han, T. H.; Tan, S.; Xue, J. J.; Zhao, Y. P.; Liu, Y. F.; Wang, H. R.; Hu, W.; Bao, C.; Mazzeo, M. et al. Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization. Nano Lett. 2020, 20, 4673–4680.

4

Yu, C.; Chen, C.; Wu, D.; Jiang, X.; Duan, Y. Research progress of inkjet printed perovskite optoelectronic devices. Chin. J. Liq. Cryst. Dis. 2021, 36, 158–175.

5
NREL. Best research-cell efficiencies [Online].https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev211117.pdf (accessed Dec 8, 2021).
6

Zhao, Y. P.; Zhu, P. C.; Wang, M. H.; Huang, S.; Zhao, Z. P.; Tan, S.; Han, T. H.; Lee, J. W.; Huang, T. Y.; Wang, R. et al. A polymerization-assisted grain growth strategy for efficient and stable perovskite solar cells. Adv. Mater. 2020, 32, 1907769.

7

Yan, K. Y.; Long, M. Z.; Zhang, T. K.; Wei, Z. H.; Chen, H. N.; Yang, S. H.; Xu, J. B. Hybrid halide perovskite solar cell precursors: Colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 2015, 137, 4460–4468.

8

Chen, C.; Wu, D.; Yuan, M.; Yu, C.; Zhang, J.; Li, C. N.; Duan, Y. Spectroscopic ellipsometry study of CsPbBr3 perovskite thin films prepared by vacuum evaporation. J. Phys. D:Appl. Phys. 2021, 54, 224002.

9

Chen, J. Z.; Park, N. G. Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett. 2020, 5, 2742–2786.

10

Yoo, J. J.; Wieghold, S.; Sponseller, M. C.; Chua, M. R.; Bertram, S. N.; Hartono, N. T. P.; Tresback, J. S.; Hansen, E. C.; Correa-Baena, J. P.; Bulović, V. et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 2019, 12, 2192–2199.

11

Rajagopal, A.; Yao, K.; Jen, A. K. Y. Toward perovskite solar cell commercialization: A perspective and research roadmap based on interfacial engineering. Adv. Mater. 2018, 30, 1800455.

12

Khenkin, M. V.; Katz, E. A.; Abate, A.; Bardizza, G.; Berry, J. J.; Brabec, C.; Brunetti, F.; Bulović, V.; Burlingame, Q.; Di Carlo, A. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 2020, 5, 35–49.

13

Arabpour Roghabadi, F.; Alidaei, M.; Mousavi, S. M.; Ashjari, T.; Tehrani, A. S.; Ahmadi, V.; Sadrameli, S. M. Stability progress of perovskite solar cells dependent on the crystalline structure: From 3D ABX3 to 2D Ruddlesden-Popper perovskite absorbers. J. Mater. Chem. A. 2019, 7, 5898–5933.

14

Huang, J. B.; Tan, S. Q.; Lund, P. D.; Zhou, H. P. Impact of H2O on organic–inorganic hybrid perovskite solar cells. Energy Environ. Sci. 2017, 10, 2284–2311.

15

Wali, Q.; Iftikhar, F. J.; Khan, M. E.; Ullah, A.; Iqbal, Y.; Jose, R. Advances in stability of perovskite solar cells. Org. Electron. 2020, 78, 105590.

16

Bi, D. Q.; Li, X.; Milić, J. V.; Kubicki, D. J.; Pellet, N.; Luo, J. S.; LaGrange, T.; Mettraux, P.; Emsley, L.; Zakeeruddin, S. M. et al. Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nat. Commun. 2018, 9, 4482.

17

Xiang, W. C.; Wang, Z. W.; Kubicki, D. J.; Tress, W.; Luo, J. S.; Prochowicz, D.; Akin, S.; Emsley, L.; Zhou, J. T.; Dietler, G. et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule 2019, 3, 205–214.

18

Meng, L.; Sun, C. K.; Wang, R.; Huang, W. C.; Zhao, Z. P.; Sun, P. Y.; Huang, T. Y.; Xue, J. J.; Lee, J. W.; Zhu, C. H. et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J. Am. Chem. Soc. 2018, 140, 17255–17262.

19

Li, H. Y.; Wang, Q. T.; Li, H. M.; Zhuang, J.; Guo, H.; Liu, X. C.; Wang, H. Y.; Zheng, R. H.; Gong, X. L. Interface modification for enhanced efficiency and stability perovskite solar cells. J. Phys. Chem. C 2020, 124, 12948–12955.

20

Agresti, A.; Pescetelli, S.; Palma, A. L.; Martín-García, B.; Najafi, L.; Bellani, S.; Moreels, I.; Prato, M.; Bonaccorso, F.; Di Carlo, A. Two-dimensional material interface engineering for efficient perovskite large-area modules. ACS Energy Lett. 2019, 4, 1862–1871.

21

Zhu, Y. Y.; Poddar, S.; Shu, L.; Fu, Y.; Fan, Z. Y. Recent progress on interface engineering for high-performance, stable perovskites solar cells. Adv. Mater. Interfaces 2020, 7, 2000118.

22

Xu, J. X.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M. J.; Jeon, S.; Ning, Z. J.; McDowell, J. J. et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081.

23

Zhao, Q.; Wu, R. S.; Zhang, Z. L.; Xiong, J.; He, Z.; Fan, B. J.; Dai, Z. J.; Yang, B. C.; Xue, X. G.; Cai, P. et al. Achieving efficient inverted planar perovskite solar cells with nondoped PTAA as a hole transport layer. Org. Electron. 2019, 71, 106–112.

24

Yaghoobi Nia, N.; Méndez, M.; Paci, B.; Generosi, A.; Di Carlo, A.; Palomares, E. Analysis of the efficiency losses in hybrid perovskite/PTAA solar cells with different molecular weights: Morphology versus kinetics. ACS Appl. Energy Mater. 2020, 3, 6853–6859.

25

Li, Y.; Liang, C.; Wang, G. P.; Li, J. L.; Chen, S.; Yang, S. H.; Xing, G. C.; Pan, H. Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar cells. Photonics Res. 2020, 8, A39–A49.

26

Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. J.; Sarkar, A.; Nazeeruddin, M. K. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486–491.

27

Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 2015, 8, 1602–1608.

28

Wang, S.; Huang, Z. H.; Wang, X. F.; Li, Y. M.; Gunther, M.; Valenzuela, S.; Parikh, P.; Cabreros, A.; Xiong, W.; Meng, Y. S. Unveiling the role of tBP-LiTFSI complexes in perovskite solar cells. J. Am. Chem. Soc. 2018, 140, 16720–16730.

29

Perron, G.; Brouillette, D.; Desnoyers, J. E. Comparison of the thermodynamic and transport properties of lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) with LiClO4 and Bu4NBr in water at 25 °C. Can. J. Chem. 1997, 75, 1608–1614.

30

Tan, B. E.; Raga, S. R.; Chesman, A. S. R.; Fürer, S. O.; Zheng, F.; McMeekin, D. P.; Jiang, L. C.; Mao, W. X.; Lin, X. F.; Wen, X. M. et al. LiTFSI-free spiro-OMeTAD-based perovskite solar cells with power conversion efficiencies exceeding 19%. Adv. Energy Mater. 2019, 9, 1901519.

31

Li, Z.; Xiao, C. X.; Yang, Y.; Harvey, S. P.; Kim, D. H.; Christians, J. A.; Yang, M. J.; Schulz, P.; Nanayakkara, S. U.; Jiang, C. S. et al. Extrinsic ion migration in perovskite solar cells. Energy Environ. Sci. 2017, 10, 1234–1242.

32

Xu, B.; Zhu, Z. L.; Zhang, J. B.; Liu, H. B.; Chueh, C. C.; Li, X. S.; Jen, A. K. Y. 4-Tert-butylpyridine free organic hole transporting materials for stable and efficient planar perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700683.

33

Sathiyan, G.; Syed, A. A.; Chen, C.; Wu, C.; Tao, L.; Ding, X. D.; Miao, Y. W.; Li, G. Q.; Cheng, M.; Ding, L. M. Dual effective dopant based hole transport layer for stable and efficient perovskite solar cells. Nano Energy 2020, 72, 104673.

34

Wang, Q.; Bi, C.; Huang, J. S. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy 2015, 15, 275–280.

35

Luo, J. S.; Xia, J. X.; Yang, H.; Chen, L. L.; Wan, Z. Q.; Han, F.; Malik, H. A.; Zhu, X. H.; Jia, C. Y. Toward high-efficiency, hysteresis-less, stable perovskite solar cells: Unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid. Energy Environ. Sci. 2018, 11, 2035–2045.

36

Liu, Y. W.; Liu, Z. H.; Lee, E. C. High-performance inverted perovskite solar cells using doped poly(triarylamine) as the hole transport layer. ACS Appl. Energy Mater. 2019, 2, 1932–1942.

37

Paek, S.; Rub, M. A.; Choi, H.; Kosa, S. A.; Alamry, K. A.; Cho, J. W.; Gao, P.; Ko, J.; Asiri, A. M.; Nazeeruddin, M. K. A dual-functional asymmetric squaraine-based low band gap hole transporting material for efficient perovskite solar cells. Nanoscale 2016, 8, 6335–6340.

38

Luo, J. S.; Han, F.; Wan, Z. Q.; Malik, H. A.; Zhao, B. W.; Chen, L. L.; Jia, C. Y.; Zhu, X. H.; Wang, R. L.; Yao, X. J. Structure-performance relationships of hole-transporting materials in perovskite solar cells: Minor structural discrepancy effects on the efficiency. Electrochim. Acta 2017, 257, 380–387.

39

Liu, J.; Liu, W. Z.; Aydin, E.; Harrison, G. T.; Isikgor, F. H.; Yang, X. B.; Subbiah, A. S.; De Wolf, S. Lewis-acid doping of triphenylamine-based hole transport materials improves the performance and stability of perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 23874–23884.

40

Baloch, A. A. B.; Alharbi, F. H.; Grancini, G.; Hossain, M. I.; Nazeeruddin, M. K.; Tabet, N. Analysis of photocarrier dynamics at interfaces in perovskite solar cells by time-resolved photoluminescence. J. Phys. Chem. C 2018, 122, 26805–26815.

41

Wang, P. Y.; Li, R. J.; Chen, B. B.; Hou, F. H.; Zhang, J.; Zhao, Y.; Zhang, X. D. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%. Adv. Mater. 2020, 32, 1905766.

42

Zhang, X. L.; Zhang, J. D.; Phuyal, D.; Du, J.; Tian, L.; Öberg, V. A.; Johansson, M. B.; Cappel, U. B.; Karis, O.; Liu, J. H. et al. Inorganic CsPbI3 perovskite coating on PbS quantum dot for highly efficient and stable infrared light converting solar cells. Adv. Energy Mater. 2018, 8, 1702049.

43

Li, M. J.; Li, B.; Cao, G. Z.; Tian, J. J. Monolithic MAPbI3 films for high-efficiency solar cells via coordination and a heat assisted process. J. Mater. Chem. A 2017, 5, 21313–21319.

44

Gao, W. Y.; Ran, C. X.; Li, J. R.; Dong, H.; Jiao, B.; Zhang, L. J.; Lan, X. G.; Hou, X.; Wu, Z. X. Robust stability of efficient lead-free formamidinium tin iodide perovskite solar cells realized by structural regulation. J. Phys. Chem. Lett. 2018, 9, 6999–7006.

45

Wei, Q. B.; Zi, W.; Yang, Z.; Yang, D. Photoelectric performance and stability comparison of MAPbI3 and FAPbI3 perovskite solar cells. Solar Energy 2018, 174, 933–939.

46

Yang, Z.; Dou, J. J.; Kou, S.; Dang, J. L.; Ji, Y. Q.; Yang, G. J.; Wu, W. Q.; Kuang, D. B.; Wang, M. Q. Multifunctional phosphorus-containing Lewis acid and base passivation enabling efficient and moisture-stable perovskite solar cells. Adv. Funct. Mater. 2020, 30, 1910710.

47

Kakavelakis, G.; Alexaki, K.; Stratakis, E.; Kymakis, E. Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer. RSC Adv. 2017, 7, 12998–13002.

48

Cai, M. L.; Ishida, N.; Li, X.; Yang, X. D.; Noda, T.; Wu, Y. Z.; Xie, F. X.; Naito, H.; Fujita, D.; Han, L. Y. Control of electrical potential distribution for high-performance perovskite solar cells. Joule 2018, 2, 296–306.

49

Li, J. S.; Jiu, T. G.; Duan, C. H.; Wang, Y.; Zhang, H. N.; Jian, H. M.; Zhao, Y. J.; Wang, N.; Huang, C. S.; Li, Y. L. Improved electron transport in MAPbI3 perovskite solar cells based on dual doping graphdiyne. Nano Energy 2018, 46, 331–337.

50

Zhou, Z. C.; Xu, S. J.; Song, J. N.; Jin, Y. Z.; Yue, Q. H.; Qian, Y. H.; Liu, F.; Zhang, F. L.; Zhu, X. Z. High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nat. Energy 2018, 3, 952–959.

51

Jiang, K.; Wu, F.; Yu, H.; Yao, Y. Q.; Zhang, G. Y.; Zhu, L. N.; Yan, H. A perylene diimide-based electron transport layer enabling efficient inverted perovskite solar cells. J. Mater. Chem. A 2018, 6, 16868–16873.

52

Targhi, F. F.; Jalili, Y. S.; Kanjouri, F. MAPbI3 and FAPbI3 perovskites as solar cells: Case study on structural, electrical and optical properties. Results Phys. 2018, 10, 616–627.

53

Sun, Y.; Peng, J. J.; Chen, Y. N.; Yao, Y. S.; Liang, Z. Q. Triple-cation mixed-halide perovskites: Towards efficient, annealing-free and air-stable solar cells enabled by Pb(SCN)2 additive. Sci. Rep. 2017, 7, 46193.

54

Gujar, T. P.; Unger, T.; Schönleber, A.; Fried, M.; Panzer, F.; van Smaalen, S.; Köhler, A.; Thelakkat, M. The role of PbI2 in CH3NH3PbI3 perovskite stability, solar cell parameters and device degradation. Phys. Chem. Chem. Phys. 2017, 20, 605–614.

Nano Research
Pages 4431-4438
Cite this article:
Yu C, Zhang B, Chen C, et al. Stable and highly efficient perovskite solar cells: Doping hydrophobic fluoride into hole transport material PTAA. Nano Research, 2022, 15(5): 4431-4438. https://doi.org/10.1007/s12274-021-4056-x
Topics:

960

Views

13

Crossref

18

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 04 November 2021
Accepted: 06 December 2021
Published: 04 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return