Journal Home > Volume 15 , Issue 5

Hybrid organic–inorganic perovskites are currently considered the most promising next-generation photovoltaic material. However, poor stability, arising from structural degradation under exposure to moisture, heat, and strong current, remains a critical challenge for their device applications. Using ab initio nonadiabatic molecular dynamics, we demonstrate that methylamine fragments deriving from the dissociation of the methylammonium cation can undermine structural stability, produce deep hole traps, and decrease charge carrier lifetimes by 1–3 orders of magnitude. Both stability and charge lifetime can be restored by methylamine passivation with chlorines, which withdraw electrons from the lone electron pair of methylamine and bring the trap levels down into the valence band. The charge lifetime of the passivated system is even longer than that of the pristine perovskite. The simulations reveal the detailed microscopic mechanism underlying deterioration of perovskite performance due to molecular defects, and demonstrate an effective defect passivation strategy to obtain highly efficient and stable perovskite solar cells.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chemical passivation of methylammonium fragments eliminates traps, extends charge lifetimes, and restores structural stability of CH3NH3PbI3 perovskite

Show Author's information Xi Zhao1Wei-Hai Fang1Run Long1( )Oleg V. Prezhdo2
College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, China
Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA

Abstract

Hybrid organic–inorganic perovskites are currently considered the most promising next-generation photovoltaic material. However, poor stability, arising from structural degradation under exposure to moisture, heat, and strong current, remains a critical challenge for their device applications. Using ab initio nonadiabatic molecular dynamics, we demonstrate that methylamine fragments deriving from the dissociation of the methylammonium cation can undermine structural stability, produce deep hole traps, and decrease charge carrier lifetimes by 1–3 orders of magnitude. Both stability and charge lifetime can be restored by methylamine passivation with chlorines, which withdraw electrons from the lone electron pair of methylamine and bring the trap levels down into the valence band. The charge lifetime of the passivated system is even longer than that of the pristine perovskite. The simulations reveal the detailed microscopic mechanism underlying deterioration of perovskite performance due to molecular defects, and demonstrate an effective defect passivation strategy to obtain highly efficient and stable perovskite solar cells.

Keywords: structural stability, nonadiabatic molecular dynamics, hybrid organic–inorganic perovskites, methylammonium dissociation, chlorine passivation, time-domain density functional theory

References(71)

1

Lü, X. J.; Yang, W. G.; Jia, Q. X.; Xu, H. W. Pressure-induced dramatic changes in organic–inorganic halide perovskites. Chem. Sci. 2017, 8, 6764–6776.

2

Stamplecoskie, K. G.; Manser, J. S.; Kamat, P. V. Dual nature of the excited state in organic–inorganic lead halide perovskites. Energy Environ. Sci. 2015, 8, 208–215.

3

Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo,J. ; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

4

Zhumekenov, A. A.; Saidaminov, M. I.; Haque, M. A.; Alarousu, E.; Sarmah, S. P.; Murali, B.; Dursun, I.; Miao, X. H.; Abdelhady, A. L.; Wu, T. et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett. 2016, 1, 32–37.

5

Ma, L.; Hao, F.; Stoumpos, C. C.; Phelan, B. T.; Wasielewski, M. R.; Kanatzidis, M. G. Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J. Am. Chem. Soc. 2016, 138, 14750–14755.

6

Tian, W. M.; Leng, J.; Zhao, C. Y.; Jin, S. Y. Long-distance charge carrier funneling in perovskite nanowires enabled by built-in halide gradient. J. Am. Chem. Soc. 2017, 139, 579–582.

7

Bai, S.; Wu, Z. W.; Wu, X. J.; Jin, Y. Z.; Zhao, N.; Chen, Z. H.; Mei, Q. Q.; Wang, X.; Ye, Z. Z.; Song, T. et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res. 2014, 7, 1749–1758.

8
Best Research-Cell Efficiency Chart [Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed Jan 4, 2021).
9

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

10

Lucarelli, G.; Di Giacomo, F.; Zardetto, V.; Creatore, M.; Brown, T. M. Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode illumination. Nano Res. 2017, 10, 2130–2145.

11

Si, J. J.; Liu, Y.; Wang, N. N.; Xu, M.; Li, J.; He, H. P.; Wang, J. P.; Jin, Y. Z. Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations. Nano Res. 2017, 10, 1329–1335.

12

Jin, M. F. F.; Gao, W.; Liang, X. J.; Fang, Y.; Yu, S. F.; Wang, T.; Xiang, W. D. The achievement of red upconversion lasing for highly stable perovskite nanocrystal glasses with the assistance of anion modulation. Nano Res. 2021, 14, 2861–2866.

13

Cao, F. R.; Tian, W.; Gu, B. K.; Ma, Y. L.; Lu, H.; Li, L. High-performance UV-vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures. Nano Res. 2017, 10, 2244–2256.

14

Cao, F. R.; Liao, Q. L.; Deng, K. M.; Chen, L.; Li, L.; Zhang, Y. Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors. Nano Res. 2018, 11, 1722–1730.

15

Peng, W. B.; Yu, R. M.; Wang, X. F.; Wang, Z. N.; Zou, H. Y.; He, Y. N.; Wang, Z. L. Temperature dependence of pyro-phototronic effect on self-powered ZnO/perovskite heterostructured photodetectors. Nano Res. 2016, 9, 3695–3704.

16

Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038.

17

Jiang, X. Q.; Wang, D. P.; Yu, Z.; Ma, W. Y.; Li, H. B.; Yang, X. C.; Liu, F.; Hagfeldt, A.; Sun, L. C. Molecular engineering of copper phthalocyanines: A strategy in developing dopant-free hole-transporting materials for efficient and ambient-stable perovskite solar cells. Adv. Energy Mater. 2019, 9, 1803287.

18

Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D’Haen, J.; D’Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 2015, 5, 1500477.

19

Misra, R. K.; Aharon, S.; Li, B. L.; Mogilyansky, D.; Visoly-Fisher, I.; Etgar, L.; Katz, E. A. Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J. Phys. Chem. Lett. 2015, 6, 326–330.

20

Niu, G. D.; Li, W. Z.; Meng, F. Q.; Wang, L. D.; Dong, H. P.; Qiu, Y. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2014, 2, 705–710.

21

Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 2013, 4, 2885.

22

Ambrosio, F.; Meggiolaro, D.; Mosconi, E.; De Angelis, F. Charge localization and trapping at surfaces in lead-iodide perovskites: The role of polarons and defects. J. Mater. Chem. A 2020, 8, 6882–6892.

23

Ambrosio, F.; Mosconi, E.; Alasmari, A. A.; Alasmary, F. A. S.; Meggiolaro, D.; De Angelis, F. Formation of color centers in lead iodide perovskites: Self-trapping and defects in the bulk and surfaces. Chem. Mater. 2020, 32, 6916–6924.

24

Meggiolaro, D.; Mosconi, E.; De Angelis, F. Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Lett. 2019, 4, 779–785.

25

Wang, Y. T.; Fang, W. H.; Long, R.; Prezhdo, O. V. Symmetry breaking at MAPbI3 perovskite grain boundaries suppresses charge recombination: Time-domain ab initio analysis. J. Phys. Chem. Lett. 2019, 10, 1617–1623.

26

Qiao, L.; Fang, W. H.; Long, R. The interplay between lead vacancy and water rationalizes the puzzle of charge carrier lifetimes in CH3NH3PbI3: Time-domain ab initio analysis. Angew. Chem., Int. Ed. 2020, 59, 13347–13353.

27

Brennan, M. C.; Draguta, S.; Kamat, P. V.; Kuno, M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 2018, 3, 204–213.

28

Brennan, M. C.; Ruth, A.; Kamat, P. V.; Kuno, M. Photoinduced anion segregation in mixed halide perovskites. Trends Chem. 2020, 2, 282–301.

29

Elmelund, T.; Seger, B.; Kuno, M.; Kamat, P. V. How interplay between photo and thermal activation dictates halide ion segregation in mixed halide perovskites. ACS Energy Lett. 2020, 5, 56–63.

30

Delugas, P.; Filippetti, A.; Mattoni, A. Methylammonium fragmentation in amines as source of localized trap levels and the healing role of Cl in hybrid lead-iodide perovskites. Phys. Rev. B 2015, 92, 045301.

31

Zhang, X.; Shen, J. X.; Turiansky, M. E.; Van de Walle, C. G. Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites. Nat. Mater. 2021, 20, 971–976.

32

Jaeger, H. M.; Fischer, S.; Prezhdo, O. V. Decoherence-induced surface hopping. J. Chem. Phys. 2012, 137, 22A545.

33

Fischer, S. A.; Habenicht, B. F.; Madrid, A. B.; Duncan, W. R.; Prezhdo, O. V. Regarding the validity of the time-dependent Kohn–Sham approach for electron-nuclear dynamics via trajectory surface hopping. J. Chem. Phys. 2011, 134, 024102.

34

Craig, C. F.; Duncan, W. R.; Prezhdo, O. V. Trajectory surface hopping in the time-dependent Kohn–Sham approach for electron-nuclear dynamics. Phys. Rev. Lett. 2005, 95, 163001.

35
Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford University Press: New York, 1995.
36

Akimov, A. V.; Prezhdo, O. V. Persistent electronic coherence despite rapid loss of electron-nuclear correlation. J. Phys. Chem. Lett. 2013, 4, 3857–3864.

37

Zhang, Z. S.; Fang, W. H.; Tokina, M. V.; Long, R.; Prezhdo, O. V. Rapid decoherence suppresses charge recombination in multi-layer 2D halide perovskites: Time-domain ab initio analysis. Nano Lett. 2018, 18, 2459–2466.

38

He, J. L.; Fang, W. H.; Long, R. Two-dimensional perovskite capping layer simultaneously improves the charge carriers’ lifetime and stability of MAPbI3 perovskite: A time-domain ab initio study. J. Phys. Chem. Lett. 2020, 11, 5100–5107.

39

He, J. L.; Fang, W. H.; Long, R.; Prezhdo, O. V. Superoxide/peroxide chemistry extends charge carriers’ lifetime but undermines chemical stability of CH3NH3PbI3 exposed to oxygen: Time-domain ab initio analysis. J. Am. Chem. Soc. 2019, 141, 5798–5807.

40

Lu, H. R.; Wei, Y. Q.; Long, R. Charge localization induced by nanopore defects in monolayer black phosphorus for suppressing nonradiative electron–hole recombination through time-domain simulation. Acta Phys. —Chim. Sin. 2020, 38, 2006064.

41

Qiao, L.; Fang, W. H.; Long, R.; Prezhdo, O. V. Photoinduced dynamics of charge carriers in metal halide perovskites from an atomistic perspective. J. Phys. Chem. Lett. 2020, 11, 7066–7082.

42

Shi, R.; Zhang, Z. S.; Fang, W. H.; Long, R. Charge localization control of electron–hole recombination in multilayer two-dimensional Dion–Jacobson hybrid perovskites. J. Mater. Chem. A 2020, 8, 9168–9176.

43

Wang, Y. T.; Long, R. Anomalous temperature-dependent charge recombination in CH3NH3PbI3 perovskite: Key roles of charge localization and thermal effect. ACS Appl. Mater. Interfaces 2019, 11, 32069–32075.

44

Li, W.; She, Y. L.; Vasenko, A. S.; Prezhdo, O. V. Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites. Nanoscale 2021, 13, 10239–10265.

45

Shi, R.; Vasenko, A. S.; Long, R.; Prezhdo, O. V. Edge influence on charge carrier localization and lifetime in CH3NH3PbBr3 perovskite: Ab initio quantum dynamics simulation. J. Phys. Chem. Lett. 2020, 11, 9100–9109.

46

Chaban, V. V.; Prezhdo, V. V.; Prezhdo, O. V. Covalent linking greatly enhances photoinduced electron transfer in fullerene-quantum dot nanocomposites: Time-domain ab initio study. J. Phys. Chem. Lett. 2013, 4, 1–6.

47

Li, L. Q.; Long, R.; Prezhdo, O. V. Charge separation and recombination in two-dimensional MoS2/WS2: Time-domain ab initio modeling. Chem. Mater. 2017, 29, 2466–2473.

48

Zhou, Z. H.; Liu, J.; Long, R.; Li, L. G.; Guo, L. J.; Prezhdo, O. V. Control of charge carriers trapping and relaxation in hematite by oxygen vacancy charge: Ab initio non-adiabatic molecular dynamics. J. Am. Chem. Soc. 2017, 139, 6707–6717.

49

Akimov, A. V.; Asahi, R.; Jinnouchi, R.; Prezhdo, O. V. What makes the photocatalytic CO2 reduction on N-doped Ta2O5 efficient: Insights from nonadiabatic molecular dynamics. J. Am. Chem. Soc. 2015, 137, 11517–11525.

50

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

51

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

52

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

53

Monkhorst, H. J., Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5191.

54

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

55

Chu, W. B.; Prezhdo, O. V. Concentric approximation for fast and accurate numerical evaluation of nonadiabatic coupling with projector augmented-wave pseudopotentials. J. Phys. Chem. Lett. 2021, 12, 3082–3089.

56

Chu, W. B.; Zheng, Q. J.; Akimov, A. V.; Zhao, J.; Saidi, W. A.; Prezhdo, O. V. Accurate computation of nonadiabatic coupling with projector augmented-wave pseudopotentials. J. Phys. Chem. Lett. 2020, 11, 10073–10080.

57

Akimov, A. V.; Prezhdo, O. V. Advanced capabilities of the PYXAID program: Integration schemes, decoherence effects, multiexcitonic states, and field-matter interaction. J. Chem. Theory Comput. 2014, 10, 789–804.

58

Akimov, A. V.; Prezhdo, O. V. The PYXAID program for non-adiabatic molecular dynamics in condensed matter systems. J. Chem. Theory Comput. 2013, 9, 4959–4972.

59

Baikie, T.; Fang, Y. N.; Kadro, J. M.; Schreyer, M.; Wei, F. X.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 2013, 1, 5628–5641.

60

Green, M. A.; Jiang, Y. J.; Soufiani, A. M.; Ho-Baillie, A. Optical properties of photovoltaic organic–inorganic lead halide perovskites. J. Phys. Chem. Lett. 2015, 6, 4774–4785.

61

Leguy, A. M. A.; Goñi, A. R.; Frost, J. M.; Skelton, J.; Brivio, F.; Rodríguez-Martínez, X.; Weber, O. J.; Pallipurath, A.; Alonso, M. I.; Campoy-Quiles, M. et al. Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. Phys. Chem. Chem. Phys. 2016, 18, 27051–27066.

62

Pistor, P.; Ruiz, A.; Cabot, A.; Izquierdo-Roca, V. Advanced Raman spectroscopy of methylammonium lead iodide: Development of a non-destructive characterisation methodology. Sci. Rep. 2016, 6, 35973.

63

Pérez-Osorio, M. A.; Lin, Q. Q.; Phillips, R. T.; Milot, R. L.; Herz, L. M.; Johnston, M. B.; Giustino, F. Raman spectrum of the organic–inorganic halide perovskite CH3NH3PbI3 from first principles and high-resolution low-temperature Raman measurements. J. Phys. Chem. C 2018, 122, 21703–21717.

64

Kilina, S. V.; Neukirch, A. J.; Habenicht, B. F.; Kilin, D. S.; Prezhdo, O. V. Quantum zeno effect rationalizes the phonon bottleneck in semiconductor quantum dots. Phys. Rev. Lett. 2013, 110, 180404.

65

Prezhdo, O. V.; Rossky, P. J. Evaluation of quantum transition rates from quantum-classical molecular dynamics simulations. J. Chem. Phys. 1997, 107, 5863–5878.

66

Liu, J.; Neukirch, A. J.; Prezhdo, O. V. Phonon-induced pure-dephasing of luminescence, multiple exciton generation, and fission in silicon clusters. J. Chem. Phys. 2013, 139, 164303.

67

Habenicht, B. F.; Prezhdo, O. V. Ab initio time-domain study of the triplet state in a semiconducting carbon nanotube: Intersystem crossing, phosphorescence time, and line width. J. Am. Chem. Soc. 2012, 134, 15648–15651.

68

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

69

Ponseca, C. S. Jr.; Savenije, T. J.; Abdellah, M.; Zheng, K. B.; Yartsev, A.; Pascher, T.; Harlang, T.; Chabera, P.; Pullerits, T.; Stepanov, A. et al. Organometal halide perovskite solar cell materials rationalized: Ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 2014, 136, 5189–5192.

70

Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; van de Krol, R.; Moehl, T.; Grätzel, M.; Moser, J. E. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat. Photon. 2014, 8, 250–255.

71

Klein, J. R.; Flender, O.; Scholz, M.; Oum, K.; Lenzer, T. Charge carrier dynamics of methylammonium lead iodide: From PbI2-rich to low-dimensional broadly emitting perovskites. Phys. Chem. Chem. Phys. 2016, 18, 10800–10808.

File
12274_2021_4054_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 August 2021
Revised: 20 November 2021
Accepted: 07 December 2021
Published: 28 December 2021
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the Beijing Natural Science Foundation (No. 2212031) and the National Natural Science Foundation of China (Nos. 21973006, 51861135101, and 21520102005). R. L. acknowledges the financial support by the Recruitment Program of Global Youth Experts of China and the Beijing Normal University Startup. O. V. P. acknowledges the support of the US Department of Energy (No. DE-SC0014429).

Return