Journal Home > Volume 15 , Issue 5

Recently, Li-CO2 battery has gradually become a research hotspot due to its high discharge capacity, energy density and environmental benefits. However, it has been an important problem for researchers because of its slow decomposition kinetics and difficult to generalize to practical application. Herein, we prepared copper polyphthalocyanine-carbon nanotubes composites (CuPPc-CNTs) by solvothermal in-situ polymerization of copper phthalocyanine on the surface of carbon nanotubes as cathode for reversible Li-CO2 batteries, which exhibits a high discharge capacity of 18,652.7 mAh·g–1 at current density of 100 mA·g–1, 1.64 V polarization at 1,000 mA·g–1, and a stable cycles number of 160 is close to 1,630 h of charge-discharge process at 200 mA·g–1. Copper polyphthalocyanine has highly efficient copper single-atom catalytic sites with excellent CO2 adsorption and activation, while carbon nanotubes provide a conductive network. The synergistic effect of the two compounds enables it to have excellent catalytic activity. The density functional theory (DFT) calculation proved that the addition of copper polyphthalocyanine significantly improved the CO2 adsorption and activation process. This study provides an opportunity for the research of covalent organic polymers (COPs) single-atom catalyst in Li-CO2 battery field.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries

Show Author's information Yunyun Xu1,§Cheng Jiang1,§Hao Gong2Hairong Xue1Bin Gao1Peng Li1Kun Chang1Xianli Huang1Tao Wang1( )Jianping He1
College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China

§ Yunyun Xu and Cheng Jiang contributed equally to this work.

Abstract

Recently, Li-CO2 battery has gradually become a research hotspot due to its high discharge capacity, energy density and environmental benefits. However, it has been an important problem for researchers because of its slow decomposition kinetics and difficult to generalize to practical application. Herein, we prepared copper polyphthalocyanine-carbon nanotubes composites (CuPPc-CNTs) by solvothermal in-situ polymerization of copper phthalocyanine on the surface of carbon nanotubes as cathode for reversible Li-CO2 batteries, which exhibits a high discharge capacity of 18,652.7 mAh·g–1 at current density of 100 mA·g–1, 1.64 V polarization at 1,000 mA·g–1, and a stable cycles number of 160 is close to 1,630 h of charge-discharge process at 200 mA·g–1. Copper polyphthalocyanine has highly efficient copper single-atom catalytic sites with excellent CO2 adsorption and activation, while carbon nanotubes provide a conductive network. The synergistic effect of the two compounds enables it to have excellent catalytic activity. The density functional theory (DFT) calculation proved that the addition of copper polyphthalocyanine significantly improved the CO2 adsorption and activation process. This study provides an opportunity for the research of covalent organic polymers (COPs) single-atom catalyst in Li-CO2 battery field.

Keywords: carbon nanotubes, copper polyphthalocyanine, CO2 adsorption , reversible Li-CO2 batteries

References(45)

1

Matter, J. M.; Stute, M.; Snæbjörnsdottir, S. Ó.; Oelkers, E. H.; Gislason, S. R.; Aradottir, E. S.; Sigfusson, B.; Gunnarsson, I.; Sigurdardottir, H.; Gunnlaugsson, E. et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 2016, 352, 1312–1314.

2

Sharifian, R.; Wagterveld, R. M.; Digdaya, I. A.; Xiang, C.; Vermaas, D. A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 2014, 14, 781–814.

3

Li, S. W.; Dong, Y.; Zhou, J. W.; Liu, Y.; Wang, J. M.; Gao, X.; Han, Y. Z.; Qi, P. F.; Wang, B. Carbon dioxide in the cage: Manganese metal-organic frameworks for high performance CO2 electrodes in Li-CO2 batteries. Energy Environ. Sci. 2018, 11, 1318–1325.

4

Takechi, K.; Shiga, T.; Asaoka, T. A Li-O2/CO2 battery. Chem. Commun. 2011, 47, 3463–3465.

5

Liu, Y. L.; Wang, R.; Lyu, Y. C.; Li, H.; Chen, L. Q. Rechargeable Li/CO2-O2 (2:1) battery and Li/CO2 battery. Energy Environ. Sci. 2014, 7, 677–681.

6

Xu, S. M.; Das, S. K.; Archer, L. A. The Li-CO2 battery: A novel method for CO2 capture and utilization. RSC Adv. 2013, 3, 6656–6660.

7

Li, Y. C.; Zhou, J. W.; Zhang, T. B.; Wang, T. S.; Li, X. L.; Jia, Y. F.; Cheng, J. L.; Guan, Q.; Liu, E. Z.; Peng, H. S. et al. Highly surface-wrinkled and N-doped CNTs anchored on metal wire: A novel fiber-shaped cathode toward high-performance flexible Li-CO2 batteries. Adv. Funct. Mater. 2019, 29, 1808117.

8

Ling, C.; Zhang, R. G.; Takechi, K.; Mizuno, F. Intrinsic barrier to electrochemically decompose Li2CO3 and LiOH. J. Phys. Chem. C 2014, 118, 26591–26598.

9

Zhang, Z.; Zhang, Q.; Chen, Y. A.; Bao, J.; Zhou, X. L.; Xie, Z. J.; Wei, J. P.; Zhou, Z. The first introduction of graphene to rechargeable Li-CO2 batteries. Angew. Chem., Int. Ed. 2015, 54, 6550–6553.

10

Li, X. L.; Zhou, J. W.; Zhang, J. X.; Li, M.; Bi, X. X.; Liu, T. C.; He, T.; Cheng, J. L.; Zhang, F.; Li, Y. P. et al. Bamboo-like nitrogen-doped carbon nanotube forests as durable metal-free catalysts for self-powered flexible Li-CO2 batteries. Adv. Mater. 2019, 31, 1903852.

11

Zhang, Z.; Bai, W. L.; Cai, Z. P.; Cheng, J. H.; Kuang, H. Y.; Dong, B. X.; Wang, Y. B.; Wang, K. X.; Chen, J. S. Enhanced electrochemical performance of aprotic Li-CO2 batteries with a ruthenium-complex-based mobile catalyst. Angew. Chem., Int. Ed. 2021, 133, 16540–16544.

12

Wang, C. Y.; Zhang, Q. M.; Zhang, X.; Wang, X. G.; Xie, Z. J.; Zhou, Z. Fabricating Ir/C nanofiber networks as free-standing air cathodes for rechargeable Li-CO2 batteries. Small 2018, 14, 1800641.

13

Zhang, Z.; Zhang, Z. W.; Liu, P. F.; Xie, Y. P.; Cao, K. Z.; Zhou, Z. Identification of cathode stability in Li-CO2 batteries with Cu nanoparticles highly dispersed on N-doped graphene. J. Mater. Chem. A 2018, 6, 3218–3223.

14

Ma, W. Q.; Lu, S. S.; Lei, X. F.; Liu, X. Z.; Ding, Y. Porous Mn2O3 cathode for highly durable Li-CO2 batteries. J. Mater. Chem. A 2018, 6, 20829–20835.

15

Zhang, X.; Wang, C. Y.; Li, H. H.; Wang, X. G.; Chen, Y. N.; Xie, Z. J.; Zhou, Z. High performance Li-CO2 batteries with NiO-CNT cathodes. J. Mater. Chem. A 2018, 6, 2792–2796.

16

Zhang, Z.; Wang, X. G.; Zhang, X.; Xie, Z. J.; Chen, Y. N.; Ma, L. P.; Peng, Z. Q.; Zhou, Z. Verifying the rechargeability of Li-CO2 batteries on working cathodes of Ni nanoparticles highly dispersed on N-doped graphene. Adv. Sci. 2018, 5, 1700567.

17

Li, X.; Wang, H.; Chen, Z. X.; Xu, H. S.; Yu, W.; Liu, C. B.; Wang, X. W.; Zhang, K.; Xie, K. Y.; Loh, K. P. Covalent-organic-framework-based Li-CO2 batteries. Adv. Mater. 2019, 31, 1905879.

18

Zhang, Y.; Zhong, R. L.; Lu, M.; Wang, J. H.; Jiang, C.; Gao, G. K.; Dong, L. Z.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Single metal site and versatile transfer channel merged into covalent organic frameworks facilitate high-performance Li-CO2 batteries. ACS Cent. Sci. 2021, 7, 175–182.

19

Hou, Y. Y.; Wang, J. Z.; Liu, L. Q.; Liu, Y. Q.; Chou, S. L.; Shi, D. Q.; Liu, H. K.; Wu, Y. P.; Zhang, W. M.; Chen J. Mo2C/CNT: An efficient catalyst for rechargeable Li-CO2 batteries. Adv. Funct. Mater. 2017, 27, 1700564.

20

Zhang, Z.; Yang, C.; Wu, S. S.; Wang, A. N.; Zhao, L. L.; Zhai, D. D.; Ren, B.; Cao, K. Z.; Zhou, Z. Exploiting synergistic effect by integrating ruthenium-copper nanoparticles highly Co-dispersed on graphene as efficient air cathodes for Li-CO2 batteries. Adv. Energy Mater. 2019, 9, 1802805.

21

Zhang, B. W.; Jiao, Y.; Chao, D. L.; Ye, C.; Wang, Y. X.; Davey, K.; Liu, H. K.; Dou, S. X.; Qiao, S. Z. Targeted synergy between adjacent Co atoms on graphene oxide as an efficient new electrocatalyst for Li-CO2 batteries. Adv. Funct. Mater. 2019, 29, 1904206.

22

Chen, J. M.; Zou, K. Y.; Ding, P.; Deng, J.; Zha, C. Y.; Hu, Y. P.; Zhao, X.; Wu, J. L.; Fan, J.; Li, Y. G. Conjugated cobalt polyphthalocyanine as the elastic and reprocessable catalyst for flexible Li-CO2 batteries. Adv. Mater. 2019, 31, 1805484.

23

Yi, J. D.; Si, D. H.; Xie, R. K.; Yin, Q.; Zhang, M. D.; Wu, Q.; Chai, G. L.; Huang, Y. B.; Cao, R. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2021, 60, 17108–17114.

24

Liu, J. J.; Yang, D.; Zhou, Y.; Zhang, G.; Xing, G. L.; Liu, Y. P.; Ma, Y. H.; Terasaki, O.; Yang, S. B.; Chen, L. Tricycloquinazoline-based 2D conductive metal-organic frameworks as promising electrocatalysts for CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 14473–14479.

25

Zeng, Y. F.; Zou, R. Q.; Zhao, Y. L. Covalent organic frameworks for CO2 capture. Angew. Chem., Int. Ed. 2016, 28, 2855–2873.

26

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

27

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

28
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res., in press, DOI: 10.1007/s12274-021-3794-0.https://doi.org/10.1007/s12274-021-3794-0
DOI
29

Jeong, G. H.; Tan, Y. C.; Song, J. T.; Lee, G. Y.; Lee, H. J.; Lim, J.; Jeong, H. Y.; Won, S.; Oh, J.; Kim, S. O. Synthetic multiscale design of nanostructured Ni single atom catalyst for superior CO2 electroreduction. Chem. Eng. J. 2021, 426, 131063.

30

Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.

31

Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

32

Yang, X. P.; Chen, Y. L.; Qin, L.; Wu, X. N.; Wu, Y. T.; Yan, T.; Geng, Z. G.; Zeng, J. Boost selectivity of HCOO- using anchored Bi single atoms towards CO2 reduction. ChemSusChem 2020, 13, 6307–6311.

33

Hu, C. G.; Gong, L. L.; Xiao, Y.; Yuan, Y. F.; Bedford, N. M.; Xia, Z. H.; Ma, L.; Wu, T. P.; Lin, Y.; Connell, J. W.; Shahbazian-Yassar, R.; Lu, J.; Amine, K.; Dai, L. M. High-performance, long-life, rechargeable Li-CO2 batteries based on a 3D holey graphene cathode implanted with single iron atoms. Adv. Mater. 2020, 32, 1907436.

34

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

35

Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811.

36

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

37

Paul, S.; Kao, Y. L.; Ni, L. M.; Ehnert, R.; Herrmann-Geppert, I.; Van De Krol, R.; Stark, R. W.; Jaegermann, W.; Kramm, U. I.; Bogdanoff, P. Influence of the metal center in M-N-C catalysts on the CO2 reduction reaction on gas diffusion electrode. ACS Catal. 2021, 11, 5850–5864.

38
Wöhrle, D.; Preußner, E. Polymeric phthalocyanines and their precursors, 7. Synthesis and analytical characterization of polymers from 1, 2, 4, 5-benzenetetracarboxylic acid derivatives. Makromolekulare Chem. 1985, 186, 2189–2207.https://doi.org/10.1002/macp.1985.021861102
DOI
39

Strohmeier, B. R.; Levden, D. E.; Field, R. S.; Hercules, D. M. Surface spectroscopic characterization of CuAl2O3 catalysts. J. Catal. 1985, 94, 514–530.

40
Robert, T.; Offergeld, G. Spectres de photoélectrons X de composés solides de cuivre Relation entre la présence de raies satellites et l'état d'oxydation du cuivre. Phys. Status Solidi 1972, 14, 277–282.https://doi.org/10.1002/pssa.2210140134
DOI
41

Wu, H. H.; Li, H. B.; Zhao, X. F.; Liu, Q. F.; Wang, J.; Xiao, J. P.; Xie, S. H.; Si, R.; Yang, F.; Miao, S. et al. Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. Energy Environ. Sci. 2016, 9, 3736–3745.

42

Mu, X. W.; Pan, H.; He, P.; Zhou, H. S. Li-CO2 and Na-CO2 batteries: Toward greener and sustainable electrical energy storage. Adv. Mater. 2020, 32, 1903790.

43

Yao, K. P. C.; Kwabi, D. G.; Quinlan, R. A.; Mansour, A. N.; Grimaud, A.; Lee, Y. L.; Lu, Y. C.; Shao-Horn, Y. Thermal stability of Li2O2 and Li2O for Li-air batteries: In situ XRD and XPS studies. J. Electrochem. Soc. 2013, 160, A824–A831.

44

Asadi, M.; Sayahpour, B.; Abbasi, P.; Ngo, A. T.; Karis, K.; Jokisaari, J. R.; Liu, C.; Narayanan, B.; Gerard, M.; Yasaei, P. et al. A lithium-oxygen battery with a long cycle life in an air-like atmosphere. Nature 2018, 555, 502–506.

45

Zhang, X.; Zhang, Q.; Zhang, Z.; Chen, Y. N.; Xie, Z. J.; Wei, J. P.; Zhou, Z. Rechargeable Li-CO2 batteries with carbon nanotubes as air cathodes. Chem. Commun. 2015, 51, 14636–14639.

File
12274_2021_4052_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 October 2021
Revised: 04 December 2021
Accepted: 05 December 2021
Published: 04 January 2022
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors acknowledge the financial support for this work from the Natural Science Foundation of Jiangsu Province (Nos. BK20190413 and BK20210616), the National Defense Technology Innovation Special Zone Spark Project (No. 2016300TS00911901), the China Postdoctoral Science Foundation (No. 2019M661825), the Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies (EEST2021-2), the Funding of Research and Practice Innovation Program in NUAA for Graduate Education (No. xcxjh20210605) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Return