Journal Home > Volume 15 , Issue 6

Principles of molecular self-assembly into giant hierarchical structures of hundreds of micrometers in size are studied in aggregates of meso-tetra(4-sulfonatophenyl)porphine (TPPS4). The aggregates form a central tubular core, which is covered with radially protruding filamentous non-branching aggregates. The filaments cluster and orient at varying angles from the core surface and some filaments form bundles. Due to shape resemblance, the structures are termed giant sea urchin (GSU) aggregates. Spectrally resolved fluorescence microscopy reveals J- and H-bands of TPPS4 aggregates in both the central core and the filaments. The fluorescence of the core is quenched while filaments exhibit strong fluorescence. Upon drying, the filament fluorescence gets quenched while the core is less affected, showing stronger relative fluorescence. Fluorescence-detected linear dichroism (FDLD) microscopy reveals that absorption dipoles corresponding to J-bands are oriented along the filament axis. The comparison of FDLD with scanning electron microscopy (SEM) reveals the structure of central core comprised of multilayer ribbons, which wind around the core axis forming a tube. Polarimetric second-harmonic generation (SHG) and third-harmonic generation microscopy exhibits strong signal from the filaments with nonlinear dipoles oriented close to the filament axis, while central core displays very low SHG due to close to centrosymmetric organization. Large chiral nonlinear susceptibility points to helical arrangement of the filaments. The investigation shows that TPPS4 molecules form distinct aggregate types, including chiral nanotubes and nanogranular aggregates that associate into the hierarchical GSU structure, prototypical to complex biological structures. The chiral TPPS4 aggregates can serve as harmonophores for nonlinear microscopy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Structure and principles of self-assembly of giant “sea urchin” type sulfonatophenyl porphine aggregates

Show Author's information Marijus Pleckaitis12Fayez Habach3Lukas Kontenis14Gábor Steinbach567Greta Jarockyte12Agne Kalnaityte1Ildikó Domonkos8Parveen Akhtar8Mehdi Alizadeh1Saulius Bagdonas1Vitalijus Karabanovas129Győző Garab7810Ricardas Rotomskis12Virginijus Barzda1311( )
Laser Research Center, Faculty of Physics, Vilnius University, Sauletekio av. 10, Vilnius LT-10223, Lithuania
Biomedical Physics Laboratory, National Cancer Institute, P. Baublio str. 3b, Vilnius LT-08406, Lithuania
Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga L5L 1C6, Canada
Light Conversion, Keramiku str. 2B, Vilnius LT-10233, Lithuania
Cellular Imaging Laboratory, Biological Research Centre, Eötvös Loránd Research Network, Temesvári körút 62, Szeged 6726, Hungary
Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Temesvári körút 62, Szeged 6726, Hungary
Biofotonika Research and Development Ltd., Dózsa u. 7, Szeged 6720, Hungary
Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Temesvári körút 62, Szeged 6726, Hungary
Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio av. 11, Vilnius LT-10223, Lithuania
Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava CZ-710 00, Czech Republic
Department of Physics, University of Toronto, 60 St. George St. Toronto, Toronto M5S 1A7, Canada

Abstract

Principles of molecular self-assembly into giant hierarchical structures of hundreds of micrometers in size are studied in aggregates of meso-tetra(4-sulfonatophenyl)porphine (TPPS4). The aggregates form a central tubular core, which is covered with radially protruding filamentous non-branching aggregates. The filaments cluster and orient at varying angles from the core surface and some filaments form bundles. Due to shape resemblance, the structures are termed giant sea urchin (GSU) aggregates. Spectrally resolved fluorescence microscopy reveals J- and H-bands of TPPS4 aggregates in both the central core and the filaments. The fluorescence of the core is quenched while filaments exhibit strong fluorescence. Upon drying, the filament fluorescence gets quenched while the core is less affected, showing stronger relative fluorescence. Fluorescence-detected linear dichroism (FDLD) microscopy reveals that absorption dipoles corresponding to J-bands are oriented along the filament axis. The comparison of FDLD with scanning electron microscopy (SEM) reveals the structure of central core comprised of multilayer ribbons, which wind around the core axis forming a tube. Polarimetric second-harmonic generation (SHG) and third-harmonic generation microscopy exhibits strong signal from the filaments with nonlinear dipoles oriented close to the filament axis, while central core displays very low SHG due to close to centrosymmetric organization. Large chiral nonlinear susceptibility points to helical arrangement of the filaments. The investigation shows that TPPS4 molecules form distinct aggregate types, including chiral nanotubes and nanogranular aggregates that associate into the hierarchical GSU structure, prototypical to complex biological structures. The chiral TPPS4 aggregates can serve as harmonophores for nonlinear microscopy.

Keywords: self-assembly, nanostructures, meso-tetra(4-sulfonatophenyl)porphine (TPPS4) aggregates , harmonophores, polarimetric second harmonic generation microscopy, third harmonic generation microscopy

References(64)

1
Tirard, S. Abiogenesis. In Encyclopedia of Astrobiology. Gargaud, M.; Irvine, W. M.; Amils, R.; Claeys, P.; Cleaves, H. J.; Gerin, M.; Rouan, D.; Spohn, T.; Tirard, S.; Viso, M., Eds.; Springer: Berlin, Heidelberg, 2014.
2

Ohno, O.; Kaizu, Y.; Kobayashi, H. J-aggregate formation of a water-soluble porphyrin in acidic aqueous media. J. Chem. Phys. 1993, 99, 4128–4139.

3

Maiti, N. C.; Mazumdar, S.; Periasamy, N. J-and H-aggregates of porphyrin-surfactant complexes: Time-resolved fluorescence and other spectroscopic studies. J. Phys. Chem. B 1998, 102, 1528–1538.

4

Short, J. M.; Berriman, J. A.; Kübel, C.; El-Hachemi, Z.; Naubron, J. V.; Balaban, T. S. Electron cryo-microscopy of TPPS4·2HCl tubes reveals a helical organisation explaining the origin of their chirality. ChemPhysChem 2013, 14, 3209–3214.

5
Kobayashi, T. J-Aggregates; World Scientific: Singapore, 2012.
6

Rotomskis, R.; Augulis, R.; Snitka, V.; Valiokas, R.; Liedberg, B. Hierarchical structure of TPPS4 J-aggregates on substrate revealed by atomic force microscopy. J. Phys. Chem. B 2004, 108, 2833–2838.

7

Ribó, J. M.; Crusats, J.; Sagués, F.; Claret, J.; Rubires, R. Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 2001, 292, 2063–2066.

8

Aggarwal, L. P. F.; Borissevitch, I. E. On the dynamics of the TPPS4 aggregation in aqueous solutions: Successive formation of H and J aggregates. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2006, 63, 227–233.

9

Romeo, A.; Castriciano, M. A.; Zagami, R.; Pollicino, G.; Scolaro, L. M.; Pasternack, R. F. Effect of zinc cations on the kinetics of supramolecular assembly and the chirality of porphyrin J-aggregates. Chem. Sci. 2017, 8, 961–967.

10

Chen, X. D.; Liu, M. H. Induced chirality of binary aggregates of oppositely charged water-soluble porphyrins on DNA matrix. J. Inorg. Biochem. 2003, 94, 106–113.

11

Liao, B.; He, B. Q.; Liu, R. G.; Huang, Y. Induced circular dichroism of anionic porphyrin TPPS aggregates in DNA solutions. Polym. J. 2009, 41, 739–743.

12

Randazzo, R.; Gaeta, M.; Gangemi, C. M. A.; Fragalà, M. E.; Purrello, R.; D’Urso, A. Chiral recognition of L- and D- amino acid by porphyrin supramolecular aggregates. Molecules 2019, 24, 84.

13

Zhao, L. Z.; Xiang, R.; Ma, R. J.; Wang, X.; An, Y. L.; Shi, L. Q. Chiral conversion and memory of TPPS J-aggregates in complex micelles: PEG-b-PDMAEMA/TPPS. Langmuir 2011, 27, 11554–11559.

14

Koti, A. S. R.; Periasamy, N. Self-assembly of template-directed J-aggregates of porphyrin. Chem. Mater. 2003, 15, 369–371.

15

Fukushima, Y. Interaction of porphyrin derivatives with a β-sheet structure of a zwitterionic polypeptide in aqueous solution. Polym. Bull. 2001, 45, 479–485.

16

Wang, Q. L.; Zhang, L.; Yang, D.; Li, T. S.; Liu, M. H. Chiral signs of TPPS co-assemblies with chiral gelators: Role of molecular and supramolecular chirality. Chem. Commun. 2016, 52, 12434–12437.

17

Rong, Y. L.; Chen, P. L.; Liu, M. H. Self-assembly of water-soluble TPPS in organic solvents: From nanofibers to mirror imaged chiral nanorods. Chem. Commun. 2013, 49, 10498–10500.

18

Lauceri, R.; Purrello, R. Transfer, memory and amplification of chirality in porphyrin aggregates. Supramol. Chem. 2005, 17, 61–66.

19

Rimeika, R.; Čiplys, D.; Poderys, V.; Rotomskis, R.; Balakauskas, S.; Shur, M. S. Subsecond-response SAW humidity sensor with porphyrin nanostructure deposited on bare and metallised piezoelectric substrate. Electron. Lett. 2007, 43, 1055–1057.

20

Schwab, A. D.; Smith, D. E.; Bond-Watts, B.; Johnston, D. E.; Hone, J.; Johnson, A. T.; de Paula, J. C.; Smith, W. F. Photoconductivity of self-assembled porphyrin nanorods. Nano Lett. 2004, 4, 1261–1265.

21

Chappaz-Gillot, C.; Marek, P. L.; Blaive, B. J.; Canard, G.; Bürck, J.; Garab, G.; Hahn, H.; Jávorfi, T.; Kelemen, L.; Krupke, R. et al. Anisotropic organization and microscopic manipulation of self-assembling synthetic porphyrin microrods that mimic chlorosomes: Bacterial light-harvesting systems. J. Am. Chem. Soc. 2012, 134, 944–954.

22

Zhao, Q.; Wang, Y.; Xu, Y. S.; Yan, Y.; Huang, J. B. Out-of-plane coordinated porphyrin nanotubes with enhanced singlet oxygen generation efficiency. Sci. Rep. 2016, 6, 31339.

23

Hilmey, D. G.; Abe, M.; Nelen, M. I.; Stilts, C. E.; Baker, G. A.; Baker, S. N.; Bright, F. V.; Davies, S. R.; Gollnick, S. O.; Oseroff, A. R. et al. Water-soluble, core-modified porphyrins as novel, longer-wavelength-absorbing sensitizers for photodynamic therapy. II. Effects of core heteroatoms and meso-substituents on biological activity. J. Med. Chem. 2002, 45, 449–461.

24

Micali, N.; Villari, V.; Scolaro, L. M.; Romeo, A.; Castriciano, M. A. Light scattering enhancement in an aqueous solution of spermine-induced fractal J-aggregate composite. Phys. Rev. E 2005, 72, 050401.

25

Scolaro, L. M.; Romeo, A.; Castriciano, M. A.; Micali, N. Unusual optical properties of porphyrin fractal J-aggregates. Chem. Commun. 2005, 3018–3020.

26

Takechi, H.; Canillas, A.; Ribó, J. M.; Watarai, H. Alignment and chirality of porphyrin J aggregates formed at the liquid–liquid interface of a centrifugal liquid membrane cell. Langmuir 2013, 29, 7249–7256.

27

Vaz Serra, V.; Neto, N. G. B.; Andrade, S. M.; Costa, S. M. B. Core-assisted formation of porphyrin J-aggregates in pH-sensitive polyelectrolyte microcapsules followed by fluorescence lifetime imaging microscopy. Langmuir 2017, 33, 7680–7691.

28

Zagami, R.; Castriciano, M. A.; Romeo, A.; Trapani, M.; Pedicini, R.; Scolaro, L. M. Tuning supramolecular chirality in nano and mesoscopic porphyrin J-aggregates. Dyes Pigm. 2017, 142, 255–261.

29

Kim, T.; Ham, S.; Lee, S. H.; Hong, Y.; Kim, D. Enhancement of exciton transport in porphyrin aggregate nanostructures by controlling the hierarchical self-assembly. Nanoscale 2018, 10, 16438–16446.

30

Aziz, A.; Narasimhan, K. L.; Periasamy, N.; Maiti, N. C. Electrical and optical properties of porphyrin monomer and its J-aggregate. Philos. Mag. B 1999, 79, 993–1004.

31

Ma, H. L.; Jin, W. J. Studies on the effects of metal ions and counter anions on the aggregate behaviors of meso-tetrakis(p-sulfonatophenyl)porphyrin by absorption and fluorescence spectroscopy. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2008, 71, 153–160.

32
Morgan, C. G.; Mitchell, A. C.; Murray, J. G. Nanosecond Time-Resolved Fluorescence Microscopy - Principles and Practice; Adam Hilger Ltd: Bristol, 1990 pp 463–466.
33

Buurman, E. P.; Sanders, R.; Draaijer, A.; Gerritsen, H. C.; van Veen, J. J. F.; Houpt, P. M.; Levine, Y. K. Fluorescence lifetime imaging using a confocal laser scanning microscope. Scanning 1992, 14, 155–159.

34
Gerritsen, H. C.; Draaijer, A.; van den Heuvel, D. J.; Agronskaia, A. V. Fluorescence lifetime imaging in scanning microscopy. In Handbook of Biological Confocal Microscopy. Pawley, J. B., Ed.; Springer: Boston, MA, 2006; pp 516–534.
35

Barzda, V.; de Grauw, C. J.; Vroom, J.; Kleima, F. J.; van Grondelle, R.; van Amerongen, H.; Gerritsen, H. C. Fluorescence lifetime heterogeneity in aggregates of LHCII revealed by time-resolved microscopy. Biophys. J. 2001, 81, 538–546.

36
Garab, G.; Pomozi, I.; Weiss, G.; Jörgens, R. Method and apparatus for determining the polarization properties of light emitted, reflected or transmitted by a material using a laser scanning microscope. U. S. Patent 6856391, July 17, 2002.
37

Steinbach, G.; Pomozi, I.; Zsiros, O.; Menczel, L.; Garab, G. Imaging anisotropy using differential polarization laser scanning confocal microscopy. Acta Histochem. 2009, 111, 317–326.

38

Steinbach, G.; Pawlak, K.; Pomozi, I.; Tóth, E. A.; Molnár, A.; Matkó, J.; Garab, G. Mapping microscopic order in plant and mammalian cells and tissues: Novel differential polarization attachment for new generation confocal microscopes (DP-LSM). Methods Appl. Fluoresc. 2014, 2, 015005.

39

Sandkuijl, D.; Tuer, A. E.; Tokarz, D.; Sipe, J. E.; Barzda, V. Numerical second-and third-harmonic generation microscopy. J. Opt. Soc. Am. B 2013, 30, 382–395.

40

Tokarz, D.; Cisek, R.; Krouglov, S.; Kontenis, L.; Fekl, U.; Barzda, V. Molecular organization of crystalline β-carotene in carrots determined with polarization-dependent second and third harmonic generation microscopy. J. Phys. Chem. B 2014, 118, 3814–3822.

41

Golaraei, A.; Mirsanaye, K.; Ro, Y.; Krouglov, S.; Akens, M. K.; Wilson, B. C.; Barzda, V. Collagen chirality and three-dimensional orientation studied with polarimetric second-harmonic generation microscopy. J. Biophotonics 2019, 12, e201800241.

42

Tokarz, D.; Cisek, R.; Golaraei, A.; Asa, S. L.; Barzda, V.; Wilson, B. C. Ultrastructural features of collagen in thyroid carcinoma tissue observed by polarization second harmonic generation microscopy. Biomed. Opt. Express 2015, 6, 3475–3481.

43

Rimeika, R.; Rotomskis, R.; Poderys, V.; Čiplys, D.; Sereika, A.; Selskis, A.; Shur, M. S. Surface acoustic wave interaction with humidity-sensitive TPPS4 nano-strip structure. Ultragarsas 2006, 58, 13–15.

44

Salomon, A.; Genet, C.; Ebbesen, T. W. Molecule-light complex: Dynamics of hybrid molecule-surface plasmon states. Angew. Chem., Int. Ed. 2009, 48, 8748–8751.

45

Jurow, M.; Schuckman, A. E.; Batteas, J. D.; Drain, C. M. Porphyrins as molecular electronic components of functional devices. Coord. Chem. Rev. 2010, 254, 2297–2310.

46
Tokarz, D. B. Nonlinear optical properties of carotenoid and chlorophyll harmonophores. Ph. D. Dissertation, University of Toronto, Toronto, 2014.
47

Cui, L. Y.; Tokarz, D.; Cisek, R.; Ng, K. K.; Wang, F.; Chen, J.; Barzda, V.; Zheng, G. Organized aggregation of porphyrins in lipid bilayers for third harmonic generation microscopy. Angew. Chem., Int. Ed. 2015, 54, 13928–13932.

48

Osváth, S.; Meszéna, G.; Barzda, V.; Garab, G. Trapping magnetically oriented chloroplast thylakoid membranes in gels for electric measurements. J. Photochem. Photobiol. B: Biol. 1994, 26, 287–292.

49

Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675.

50

Steinbach, G.; Nagy, D.; Sipka, G.; Manders, E.; Garab, G.; Zimányi, L. Fluorescence-detected linear dichroism imaging in a re-scan confocal microscope equipped with differential polarization attachment. Eur. Biophys. J. 2019, 48, 457–463.

51

De Luca, G. M. R.; Breedijk, R. M. P.; Brandt, R. A. J.; Zeelenberg, C. H. C.; de Jong, B. E.; Timmermans, W.; Azar, L. N.; Hoebe, R. A.; Stallinga, S.; Manders, E. M. M. Re-scan confocal microscopy: Scanning twice for better resolution. Biomed. Opt. Express 2013, 4, 2644–2656.

52

Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682.

53

Tuer, A. E.; Krouglov, S.; Prent, N.; Cisek, R.; Sandkuijl, D.; Yasufuku, K.; Wilson, B. C.; Barzda, V. Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy. J. Phys. Chem. B 2011, 115, 12759–12769.

54

Major, A.; Cisek, R.; Barzda, V. Femtosecond Yb: KGd(WO4)2 laser oscillator pumped by a high power fiber-coupled diode laser module. Opt. Express 2006, 14, 12163–12168.

55

Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17.

56

Kelbauskas, L.; Bagdonas, S.; Dietel, W.; Rotomskis, R. Excitation relaxation and structure of TPPS4 J-aggregates. J. Luminescence 2003, 101, 253–262.

57

Barzda, V.; Jennings, R. C.; Zucchelli, G.; Garab, G. Kinetic analysis of the light-induced fluorescence quenching in light-harvesting chlorophyll a/b pigment-protein complex of photosystem II. Photochem. Photobiol. 1999, 70, 751–759.

58

Golaraei, A.; Kontenis, L.; Mirsanaye, K.; Krouglov, S.; Akens, M. K.; Wilson, B. C.; Barzda, V. Complex susceptibilities and chiroptical effects of collagen measured with polarimetric second-harmonic generation microscopy. Sci. Rep. 2019, 9, 12488.

59

Cisek, R.; Tokarz, D.; Krouglov, S.; Steup, M.; Emes, M. J.; Tetlow, I. J.; Barzda, V. Second harmonic generation mediated by aligned water in starch granules. J. Phys. Chem. B 2014, 118, 14785–14794.

60

Friesen, B. A.; Nishida, K. R. A.; McHale, J. L.; Mazur, U. New nanoscale insights into the internal structure of tetrakis(4-sulfonatophenyl) porphyrin nanorods. J. Phys. Chem. C 2009, 113, 1709–1718.

61

Vlaming, S. M.; Augulis, R.; Stuart, M. C. A.; Knoester, J.; van Loosdrecht, P. H. M. Exciton spectra and the microscopic structure of self-assembled porphyrin nanotubes. J. Phys. Chem. B 2009, 113, 2273–2283.

62

Wan, Y.; Stradomska, A.; Fong, S.; Guo, Z.; Schaller, R. D.; Wiederrecht, G. P.; Knoester, J.; Huang, L. B. Exciton level structure and dynamics in tubular porphyrin aggregates. J. Phys. Chem. C 2014, 118, 24854–24865.

63

Leishman, C. W.; McHale, J. L. Illuminating excitonic structure in ion-dependent porphyrin aggregates with solution phase and single-particle resonance Raman spectroscopy. J. Phys. Chem. C 2016, 120, 12783–12795.

64

Jochum, T.; Reddy, C. M.; Eichhöfer, A.; Buth, G.; Szmytkowski, J.; Kalt, H.; Moss, D.; Balaban, T. S. The supramolecular organization of self-assembling chlorosomal bacteriochlorophyll c, d, or e mimics. Proc. Natl. Acad. Sci. USA 2008, 105, 12736–12741.

Video
12274_2021_4048_MOESM2_ESM.mp4
File
12274_2021_4048_MOESM1_ESM.pdf (1.9 MB)
12274_2021_4048_MOESM3_ESM.cml (4 MB)
12274_2021_4048_MOESM4_ESM.cml (4.5 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 September 2021
Revised: 04 December 2021
Accepted: 05 December 2021
Published: 14 March 2022
Issue date: June 2022

Copyright

© The Author(s) 2021

Acknowledgements

Acknowledgements

The authors dedicate this paper to the memory of Teodor Silviu Balaban (1958–2016) for his pioneering contributions on the structure and spectroscopy of ordered self-assembling nanorods.

This work was supported by European Regional Development Fund (No. 01.2.2.-LMT-K-718-02-0016) under grant agreement with the Research Council of Lithuania (LMTLT). Support was also provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) (Nos. RGPIN-2017-06923 and DGDND-2017-00099). I. D. was supported by GINOP-2.3.2-15-2016-00058 and G. S. by GINOP-2.3.2-15-2016-00001 and ELKH KÜ-37/2020 grants from the Hungarian Ministry for National Economy and the Eötvös Loránd Research Network, respectively.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return