Journal Home > Volume 16 , Issue 4

With the fast-pace digitalization evolution in the current generation’s lifestyle and the industry revolution, the energy demand has been skyrocketed. Recently, the two-dimensional (2D) bismuth-based nanomaterials emerged as a promising photocatalyst candidate in solar fuel conversion, not only for its exceptional light absorption capability and tunable optical properties, but it also can be synthesized into diverse variety of nanomaterials with different ranges of potential gap and band position to fulfill the potential requirement of wide range of photocatalytic reaction. Yet, the weak light harvesting ability and ultrafast charge recombination has restricted its potential in commercial application. Thus, recent researches have been focusing on tackling these issues by incorporating some modification strategies such as heteroatom doping, vacancy engineering, facet engineering, bismuth rich strategy and heterojunction engineering. Herein, this review article presents the state-of-the-art modifications on 2D bismuth-based parent material, specifically on the relationship between each of the modification strategy on the electronic properties and surface chemistry in achieving boosted photocatalytic performance. In the view of the unique charge interaction between two semiconductors with different dimensions, we systematically discuss the rational heterostructure design from the dimensionality perspective, namely, point-to-face, line-to-face, face-to-face, and bulk-to-face in solar fuel conversion to provide inspiring insights for future interface engineering. Finally, the challenges and the future research outlook in the solar-to-fuel conversion are highlighted to push forward the design of high-performance bismuth-based photocatalyst in realizing commercial-scale solar-to-fuel conversion.


menu
Abstract
Full text
Outline
About this article

Dimensional heterojunction design: The rising star of 2D bismuth-based nanostructured photocatalysts for solar-to-chemical conversion

Show Author's information Joel Jie Foo1,2Sue-Faye Ng1,2Wee-Jun Ong1,2,3,4( )
School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China

Abstract

With the fast-pace digitalization evolution in the current generation’s lifestyle and the industry revolution, the energy demand has been skyrocketed. Recently, the two-dimensional (2D) bismuth-based nanomaterials emerged as a promising photocatalyst candidate in solar fuel conversion, not only for its exceptional light absorption capability and tunable optical properties, but it also can be synthesized into diverse variety of nanomaterials with different ranges of potential gap and band position to fulfill the potential requirement of wide range of photocatalytic reaction. Yet, the weak light harvesting ability and ultrafast charge recombination has restricted its potential in commercial application. Thus, recent researches have been focusing on tackling these issues by incorporating some modification strategies such as heteroatom doping, vacancy engineering, facet engineering, bismuth rich strategy and heterojunction engineering. Herein, this review article presents the state-of-the-art modifications on 2D bismuth-based parent material, specifically on the relationship between each of the modification strategy on the electronic properties and surface chemistry in achieving boosted photocatalytic performance. In the view of the unique charge interaction between two semiconductors with different dimensions, we systematically discuss the rational heterostructure design from the dimensionality perspective, namely, point-to-face, line-to-face, face-to-face, and bulk-to-face in solar fuel conversion to provide inspiring insights for future interface engineering. Finally, the challenges and the future research outlook in the solar-to-fuel conversion are highlighted to push forward the design of high-performance bismuth-based photocatalyst in realizing commercial-scale solar-to-fuel conversion.

Keywords: water splitting, CO2 reduction, Z-scheme, 2D heterojunction, 2D nanomaterial, N2 fixation

References(306)

[1]
BP statistical review of world energy 2021: A dramatic impact on energy markets; BP p.l.c.: London, UK, 2021; pp 10, 15 (accessed Oct 18, 2021)
[2]
UN Energy-United Nations Sustainable Development [Online]. 2021.https://www.un.org/sustainabledevelopment/energy/ (accessed Oct 21, 2021).
[3]

Hasija, V.; Kumar, A.; Sudhaik, A.; Raizada, P.; Singh, P.; Van Le, Q.; Le, T. T.; Nguyen, V. H. Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO2 conversion, and bacterial inactivation: A review. Environ. Chem. Lett. 2021, 19, 2941–2966.

[4]

Yu, X. N.; Ng, S. F.; Putri, L. K.; Tan, L. L.; Mohamed, A. R.; Ong, W. J. Point-defect engineering: Leveraging imperfections in graphitic carbon nitride (g-C3N4) photocatalysts toward artificial photosynthesis. Small 2021, 17, 2006851.

[5]

Akhundi, A.; Habibi-Yangjeh, A.; Abitorabi, M.; Rahim Pouran, S. Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts. Catal. Rev. 2019, 61, 595–628.

[6]

Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

[7]

Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.; Fu, X. Z.; Li, Z. H. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem., Int. Ed. 2012, 51, 3364–3367.

[8]

Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energy Environ. Sci. 2015, 8, 731–759.

[9]

Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109–2125.

[10]

Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

[11]

Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energy Rev. 2007, 11, 401–425.

[12]

Gonçalves, J. M.; Ireno da Silva, M.; Angnes, L.; Araki, K. Vanadium-containing electro and photocatalysts for the oxygen evolution reaction: A review. J. Mater. Chem. A 2020, 8, 2171–2206.

[13]

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

[14]

Zhang, G. Q.; Sewell, C. D.; Zhang, P. X.; Mi, H. W.; Lin, Z. Q. Nanostructured photocatalysts for nitrogen fixation. Nano Energy 2020, 71, 104645.

[15]

Cheng, M.; Xiao, C.; Xie, Y. Photocatalytic nitrogen fixation: The role of defects in photocatalysts. J. Mater. Chem. A 2019, 7, 19616–19633.

[16]

Zhou, Y.; Tian, Z. P.; Zhao, Z. Y.; Liu, Q.; Kou, J. H.; Chen, X. Y.; Gao, J.; Yan, S. C.; Zou, Z. G. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl. Mater. Interfaces 2011, 3, 3594–3601.

[17]

Liang, L.; Lei, F. C.; Gao, S.; Sun, Y. F.; Jiao, X. C.; Wu, J.; Qamar, S.; Xie, Y. Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol. Angew. Chem., Int. Ed. 2015, 54, 13971–13974.

[18]

Gao, S.; Gu, B. C.; Jiao, X. C.; Sun, Y. F.; Zu, X. L.; Yang, F.; Zhu, W. G.; Wang, C. M.; Feng, Z. M.; Ye, B. J. et al. Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers. J. Am. Chem. Soc. 2017, 139, 3438–3445.

[19]

Hou, J. G.; Cao, S. Y.; Wu, Y. Z.; Liang, F.; Sun, Y. F.; Lin, Z. S.; Sun, L. C. Simultaneously efficient light absorption and charge transport of phosphate and oxygen-vacancy confined in bismuth tungstate atomic layers triggering robust solar CO2 reduction. Nano Energy 2017, 32, 359–366.

[20]

Ma, Z. Y.; Li, P. H.; Ye, L. Q.; Zhou, Y.; Su, F. Y.; Ding, C. H.; Xie, H. Q.; Bai, Y.; Wong, P. K. Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO2 conversion. J. Mater. Chem. A 2017, 5, 24995–25004.

[21]

Xue, X. L.; Chen, R. P.; Chen, H. W.; Hu, Y.; Ding, Q. Q.; Liu, Z. T.; Ma, L. B.; Zhu, G. Y.; Zhang, W. J.; Yu, Q. et al. Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets. Nano Lett. 2018, 18, 7372–7377.

[22]

Zhu, M. S.; Sun, Z. C.; Fujitsuka, M.; Majima, T. Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light. Angew. Chem., Int. Ed. 2018, 57, 2160–2164.

[23]

Jo, W. K.; Kumar, S.; Eslava, S.; Tonda, S. Construction of Bi2WO6/RGO/g-C3N4 2D/2D/2D hybrid Z-scheme heterojunctions with large interfacial contact area for efficient charge separation and high-performance photoreduction of CO2 and H2O into solar fuels. Appl. Catal. B:Environ. 2018, 239, 586–598.

[24]

Di, J.; Xia, J. X.; Chisholm, M. F.; Zhong, J.; Chen, C.; Cao, X. Z.; Dong, F.; Chi, Z.; Chen, H. L.; Weng, Y. X. et al. Defect-tailoring mediated electron–hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation. Adv. Mater. 2019, 31, 1807576.

[25]

Bai, Y.; Yang, P.; Wang, L.; Yang, B.; Xie, H. Q.; Zhou, Y.; Ye, L. Q. Ultrathin Bi4O5Br2 nanosheets for selective photocatalytic CO2 conversion into CO. Chem. Eng. J. 2019, 360, 473–482.

[26]

Kong, X. Y.; Lee, W. Q.; Mohamed, A. R.; Chai, S. P. Effective steering of charge flow through synergistic inducing oxygen vacancy defects and p-n heterojunctions in 2D/2D surface-engineered Bi2WO6/BiOI cascade: Towards superior photocatalytic CO2 reduction activity. Chem. Eng. J. 2019, 372, 1183–1193.

[27]

Xu, Y.; You, Y.; Huang, H. W.; Guo, Y. X.; Zhang, Y. H. Bi4NbO8Cl{001} nanosheets coupled with g-C3N4 as 2D/2D heterojunction for photocatalytic degradation and CO2 reduction. J. Hazard. Mater. 2020, 381, 121159.

[28]

Jiang, Y.; Chen, H. Y.; Li, J. Y.; Liao, J. F.; Zhang, H. H.; Wang, X. D.; Kuang, D. B. Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2020, 30, 2004293.

[29]

Li, Y. J.; Liu, Y. Y.; Xing, D. N.; Wang, J. J.; Zheng, L. R.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Cheng, H. F.; Dai, Y. et al. 2D/2D heterostructure of ultrathin BiVO4/Ti3C2 nanosheets for photocatalytic overall water splitting. Appl. Catal. B:Environ. 2021, 285, 119855.

[30]

Liu, L.; Liu, J. Q.; Sun, K. L.; Wan, J.; Fu, F.; Fan, J. Novel phosphorus-doped Bi2WO6 monolayer with oxygen vacancies for superior photocatalytic water detoxication and nitrogen fixation performance. Chem. Eng. J. 2021, 411, 128629.

[31]

Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615–7621.

[32]

Xing, M. Y.; Zhou, Y.; Dong, C. Y.; Cai, L. J.; Zeng, L. X.; Shen, B.; Pan, L. H.; Dong, C. C.; Chai, Y.; Zhang, J. L. et al. Modulation of the reduction potential of TiO2−x by fluorination for efficient and selective CH4 generation from CO2 photoreduction. Nano Lett. 2018, 18, 3384–3390.

[33]

Sharma, P.; Kumar, S.; Tomanec, O.; Petr, M.; Zhu Chen, J.; Miller, J. T.; Varma, R. S.; Gawande, M. B.; Zbořil, R. Carbon nitride-based ruthenium single atom photocatalyst for CO2 reduction to methanol. Small 2021, 17, 2006478.

[34]

Zhu, M. S.; Zhai, C. Y.; Fujitsuka, M.; Majima, T. Noble metal-free near-infrared-driven photocatalyst for hydrogen production based on 2D hybrid of black phosphorus/WS2. Appl. Catal. B:Environ. 2018, 221, 645–651.

[35]

Liu, W.; Shen, J.; Yang, X. F.; Liu, Q. Q.; Tang, H. Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting. Appl. Surf. Sci. 2018, 456, 369–378.

[36]

Huang, Y. W.; Zhu, Y. S.; Chen, S. J.; Xie, X. Q.; Wu, Z. J.; Zhang, N. Schottky junctions with Bi cocatalyst for taming aqueous phase N2 reduction toward enhanced solar ammonia production. Adv. Sci. 2021, 8, 2003626.

[37]
Navarro, R. M.; Guil, R.; Fierro, J. L. G. Introduction to hydrogen production. In Compendium of Hydrogen Energy: Hydrogen Production and Purification: A Volume in Woodhead Publishing Series in Energy. Subramani, V.; Basile, A.; Veziroğlu, T. N., Eds.; Woodhead Publishing: Cambridge, 2015; pp 21–61.
[38]
Solar fuels and artificial photosynthesis; The Royal Society of Chemistry, 2012. (accessed Nov 22, 2021)
[39]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[40]
Abdullah, H.; Khan, M. R.; Ong, H. R.; Yaakob, Z. Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview. J. CO2 Utiliz. 2017, 22, 15–32.
[41]

Gao, D. D.; Liu, W. J.; Xu, Y.; Wang, P.; Fan, J. J.; Yu, H. G. Core–shell Ag@Ni cocatalyst on the TiO2 photocatalyst: One-step photoinduced deposition and its improved H2-evolution activity. Appl. Catal. B:Environ. 2020, 260, 118190.

[42]

Li, H. T.; Wang, P.; Yi, X. Q.; Yu, H. G. Edge-selectively amidated graphene for boosting H2-evolution activity of TiO2 photocatalyst. Appl. Catal. B:Environ. 2020, 264, 118504.

[43]

Li, X. Y.; Xie, J. J.; Rao, H.; Wang, C.; Tang, J. W. Platinum- and CuOx-decorated TiO2 photocatalyst for oxidative coupling of methane to C2 hydrocarbons in a flow reactor. Angew. Chem., Int. Ed. 2020, 59, 19702–19707.

[44]

Wu, S. S.; Xu, Z. F.; Zhang, J. L.; Zhu, M. S. Recent progress on metallic bismuth-based photocatalysts: Synthesis, construction, and application in water purification. Sol. RRL 2021, 5, 2100668.

[45]

Jin, X. L.; Ye, L. Q.; Xie, H. Q.; Chen, G. Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis. Coord. Chem. Rev. 2017, 349, 84–101.

[46]

Xu, K.; Wang, L.; Xu, X.; Dou, S. X.; Hao, W. C.; Du, Y. Two dimensional bismuth-based layered materials for energy-related applications. Energy Storage Mater. 2019, 19, 446–463.

[47]

Bian, X. A.; Zhang, S.; Zhao, Y. X.; Shi, R.; Zhang, T. R. Layered double hydroxide-based photocatalytic materials toward renewable solar fuels production. InfoMat 2021, 3, 719–738.

[48]

Wang, Y. H.; Sun, S.; Zhang, J. L.; Huang, Y. L.; Chen, W. Recent progress in epitaxial growth of two-dimensional phosphorus. SmartMat 2021, 2, 286–298.

[49]

Hou, H. L.; Zhang, X. W. Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications. Chem. Eng. J. 2020, 395, 125030.

[50]

Zhao, Y. X.; Zhang, S.; Shi, R.; Waterhouse, G. I. N.; Tang, J. W.; Zhang, T. R. Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Mater. Today 2020, 34, 78–91.

[51]

Li, X.; Wang, J. One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion. InfoMat 2020, 2, 3–32.

[52]

Luo, J. M.; Matios, E.; Wang, H.; Tao, X. Y.; Li, W. Y. Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat 2020, 2, 1057–1076.

[53]

Ng, S. F.; Lau, M. Y. L.; Ong, W. J. Lithium-sulfur battery cathode design: Tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion. Adv. Mater. 2021, 33, 2008654.

[54]

Shi, Y. B.; Li, J.; Mao, C. L.; Liu, S.; Wang, X. B.; Liu, X. F.; Zhao, S. X.; Liu, X.; Huang, Y. Q.; Zhang, L. Z. Van der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis. Nat. Commun. 2021, 12, 5923.

[55]

Ma, H.; He, Y.; Chen, P.; Wang, H.; Sun, Y. J.; Li, J. Y.; Dong, F.; Xie, G. X.; Sheng, J. P. Ultrathin two-dimensional Bi-based photocatalysts: Synthetic strategies, surface defects, and reaction mechanisms. Chem. Eng. J. 2021, 417, 129305.

[56]

Wang, S. B.; Wang, Y.; Zang, S. Q.; Lou, X. W. Hierarchical hollow heterostructures for photocatalytic CO2 reduction and water splitting. Small Methods 2020, 4, 1900586.

[57]

Wang, S. B.; Guan, B. Y.; Lu, Y.; Lou, X. W. D. Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 2017, 139, 17305–17308.

[58]

Huang, L. J.; Li, B. F.; Su, B.; Xiong, Z.; Zhang, C. J.; Hou, Y. D.; Ding, Z. X.; Wang, S. B. Fabrication of hierarchical Co3O4@CdIn2S4 p-n heterojunction photocatalysts for improved CO2 reduction with visible light. J. Mater. Chem. A 2020, 8, 7177–7183.

[59]

Wang, S. B.; Guan, B. Y.; Lou, X. W. D. Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J. Am. Chem. Soc. 2018, 140, 5037–5040.

[60]

Li, B. F.; Wang, W. J.; Zhao, J. W.; Wang, Z. Y.; Su, B.; Hou, Y. D.; Ding, Z. X.; Ong, W. J.; Wang, S. B. All-solid-state direct Z-scheme NiTiO3/Cd0.5Zn0.5S heterostructures for photocatalytic hydrogen evolution with visible light. J. Mater. Chem. A 2021, 9, 10270–10276.

[61]

Xie, Q.; He, W. M.; Liu, S. W.; Li, C. H.; Zhang, J. F.; Wong, P. K. Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling. Chin. J. Catal. 2020, 41, 140–153.

[62]

Liu, L. Z.; Dai, K.; Zhang, J. F.; Li, L. L. Plasmonic Bi-enhanced ammoniated α-MnS/Bi2MoO6 S-scheme heterostructure for visible-light-driven CO2 reduction. J. Colloid Interface Sci. 2021, 604, 844–855.

[63]

Zhen, Y. Z.; Yang, C. M.; Shen, H. D.; Xue, W. W.; Gu, C. R.; Feng, J. B.; Zhang, Y. C.; Fu, F.; Liang, Y. C. Photocatalytic performance and mechanism insights of a S-scheme g-C3N4/Bi2MoO6 heterostructure in phenol degradation and hydrogen evolution reactions under visible light. Phys. Chem. Chem. Phys. 2020, 22, 26278–26288.

[64]

Chen, P.; Liu, H. J.; Sun, Y. J.; Li, J. Y.; Cui, W.; Wang, L. A.; Zhang, W. D.; Yuan, X. Y.; Wang, Z. M.; Zhang, Y. X. et al. Bi metal prevents the deactivation of oxygen vacancies in Bi2O2CO3 for stable and efficient photocatalytic NO abatement. Appl. Catal. B:Environ. 2020, 264, 118545.

[65]

Liu, Y.; Hu, Z. F.; Yu, J. C. Photocatalytic degradation of ibuprofen on S-doped BiOBr. Chemosphere 2021, 278, 130376.

[66]

Wang, B.; Liu, J. W.; Yao, S.; Liu, F. Y.; Li, Y. K.; He, J. Q.; Lin, Z.; Huang, F.; Liu, C.; Wang, M. Y. Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis. J. Mater. Chem. A 2021, 9, 17143–17172.

[67]

Li, M.; Huang, H. W.; Yu, S. X.; Tian, N.; Zhang, Y. H. Facet, junction and electric field engineering of bismuth-based materials for photocatalysis. ChemCatChem 2018, 10, 4477–4496.

[68]

Li, J. R.; Zhang, W. D.; Ran, M. X.; Sun, Y. J.; Huang, H. W.; Dong, F. Synergistic integration of Bi metal and phosphate defects on hexagonal and monoclinic BiPO4: Enhanced photocatalysis and reaction mechanism. Appl. Catal. B:Environ. 2019, 243, 313–321.

[69]

Zhang, L.; Li, Y. H.; Li, Q.; Fan, J. J.; Carabineiro, S. A. C.; Lv, K. L. Recent advances on bismuth-based photocatalysts: Strategies and mechanisms. Chem. Eng. J. 2021, 419, 129484.

[70]

Ye, L. Q.; Deng, Y.; Wang, L.; Xie, H. Q.; Su, F. Y. Bismuth-based photocatalysts for solar photocatalytic carbon dioxide conversion. ChemSusChem 2019, 12, 3671–3701.

[71]

Guo, L. N.; Huang, H. W.; Mei, L. F.; Li, M.; Zhang, Y. H. Bismuth-based Z-scheme photocatalytic systems for solar energy conversion. Mater. Chem. Front. 2021, 5, 2484–2505.

[72]

He, R. A.; Cao, S. W.; Zhou, P.; Yu, J. G. Recent advances in visible light Bi-based photocatalysts. Chin. J. Catal. 2014, 35, 989–1007.

[73]

He, R. G.; Xu, D. F.; Cheng, B.; Yu, J. G.; Ho, W. K. Review on nanoscale Bi-based photocatalysts. Nanoscale Horiz. 2018, 3, 464–504.

[74]
Utomo, W. P.; Leung, M. K. H.; Yin, Z. Y.; Wu, H.; Ng, Y. H. Advancement of bismuth-based materials for electrocatalytic and photo(electro)catalytic ammonia synthesis. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202106713.
[75]

Lim, X. B.; Ong, W. J. A current overview of the oxidative desulfurization of fuels utilizing heat and solar light: From materials design to catalysis for clean energy. Nanoscale Horiz. 2021, 6, 588–633.

[76]

Zhang, H. Y.; Rong, S. P.; Zhang, P. Y. Photoinduced simultaneous thermal and photocatalytic activities of MnO2 revealed by femtosecond transient absorption spectroscopy. ACS Appl. Mater. Interfaces 2021, 13, 18944–18953.

[77]

Kudo, A.; Ueda, K.; Kato, H.; Mikami, I. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal. Lett. 1998, 53, 229–230.

[78]

Akihiko, K.; Satoshi, H. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem. Lett. 1999, 28, 1103–1104.

[79]

Xiong, J.; Song, P.; Di, J.; Li, H. M. Bismuth-rich bismuth oxyhalides: A new opportunity to trigger high-efficiency photocatalysis. J. Mater. Chem. A 2020, 8, 21434–21454.

[80]

Chen, T.; Liu, L. Z.; Hu, C.; Huang, H. W. Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. Chin. J. Catal. 2021, 42, 1413–1438.

[81]

Han, Q. F. Advances in preparation methods of bismuth-based photocatalysts. Chem. Eng. J. 2021, 414, 127877.

[82]

Wu, X. L.; Toe, C. Y.; Su, C. L.; Ng, Y. H.; Amal, R.; Scott, J. Preparation of Bi-based photocatalysts in the form of powdered particles and thin films: A review. J. Mater. Chem. A 2020, 8, 15302–15318.

[83]

Xu, Z. F.; Xu, K.; Feng, H. F.; Du, Y.; Hao, W. C. s-p Orbital hybridization: A strategy for developing efficient photocatalysts with high carrier mobility. Sci. Bull. 2018, 63, 465–468.

[84]

Razzaq, A.; In, S. I. TiO2 based nanostructures for photocatalytic CO2 conversion to valuable chemicals. Micromachines 2019, 10, 326.

[85]

Yang, J. J. Progress of metal oxide (sulfide)-based photocatalytic materials for reducing nitrogen to ammonia. J. Chem. 2018, 2018, 3286782.

[86]

Wang, Z. Y.; Chen, M. J.; Huang, Y.; Shi, X. J.; Zhang, Y. F.; Huang, T. T.; Cao, J. J.; Ho, W. K.; Lee, S. C. Self-assembly synthesis of boron-doped graphitic carbon nitride hollow tubes for enhanced photocatalytic NOx removal under visible light. Appl. Catal. B:Environ. 2018, 239, 352–361.

[87]

Zhu, B. C.; Zhang, J. F.; Jiang, C. J.; Cheng, B.; Yu, J. G. First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst. Appl. Catal. B:Environ. 2017, 207, 27–34.

[88]

Yu, J. X.; Chen, Z. Q.; Zeng, L.; Ma, Y. Y.; Feng, Z.; Wu, Y.; Lin, H. J.; Zhao, L. H.; He, Y. M. Synthesis of carbon-doped KNbO3 photocatalyst with excellent performance for photocatalytic hydrogen production. Sol. Energy Mater. Sol. Cells 2018, 179, 45–56.

[89]

Yang, L. Q.; Huang, J. F.; Shi, L.; Cao, L. Y.; Zhou, W.; Chang, K.; Meng, X. G.; Liu, G. G.; Jie, Y. N.; Ye, J. H. Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by Eosin Y under visible light irradiation. Nano Energy 2017, 36, 331–340.

[90]

Bie, C. B.; Yu, H. G.; Cheng, B.; Ho, W. K.; Fan, J. J.; Yu, J. G. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst. Adv. Mater. 2021, 33, 2003521.

[91]

Sun, C. Z.; Zhang, H.; Liu, H.; Zheng, X. X.; Zou, W. X.; Dong, L.; Qi, L. Enhanced activity of visible-light photocatalytic H2 evolution of sulfur-doped g-C3N4 photocatalyst via nanoparticle metal Ni as cocatalyst. Appl. Catal. B:Environ. 2018, 235, 66–74.

[92]

Khairnar, S. D.; Kulkarni, A. N.; Shinde, S. G.; Marathe, S. D.; Marathe, Y. V.; Dhole, S. D.; Shrivastava, V. S. Synthesis and characterization of 2D La-doped Bi2O3 for photocatalytic degradation of organic dye and pesticide. J. Photochem. Photobiol. 2021, 6, 100030.

[93]

Jin, X. L.; Xu, Y. X.; Zhou, X.; Lv, C. D.; Huang, Q. Z.; Chen, G.; Xie, H. Q.; Ge, T.; Cao, J.; Zhan, J. Q. et al. Single-atom Fe triggers superb CO2 photoreduction on a bismuth-rich catalyst. ACS Mater. Lett. 2021, 3, 364–371.

[94]

Di, J.; Chen, C.; Yang, S. Z.; Chen, S. M.; Duan, M. L.; Xiong, J.; Zhu, C.; Long, R.; Hao, W.; Chi, Z. et al. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 2019, 10, 2840.

[95]

Irfan, S.; Li, L. L.; Saleemi, A. S.; Nan, C. W. Enhanced photocatalytic activity of La3+ and Se4+ co-doped bismuth ferrite nanostructures. J. Mater. Chem. A 2017, 5, 11143–11151.

[96]

Li, H. D.; Li, W. J.; Wang, F. Z.; Liu, X. T.; Ren, C. J. Fabrication of two lanthanides co-doped Bi2MoO6 photocatalyst: Selection, design and mechanism of Ln1/Ln2 redox couple for enhancing photocatalytic activity. Appl. Catal. B:Environ. 2017, 217, 378–387.

[97]

Wang, R. N.; Ni, S.; Liu, G.; Xu, X. X. Hollow CaTiO3 cubes modified by La/Cr co-doping for efficient photocatalytic hydrogen production. Appl. Catal. B:Environ. 2018, 225, 139–147.

[98]

Babu, P.; Mohanty, S.; Naik, B.; Parida, K. Synergistic effects of boron and sulfur Co-doping into graphitic carbon nitride framework for enhanced photocatalytic activity in visible light driven hydrogen generation. ACS Appl. Energy Mater. 2018, 1, 5936–5947.

[99]

Wang, K.; Fu, J. L.; Zheng, Y. Insights into photocatalytic CO2 reduction on C3N4: Strategy of simultaneous B, K co-doping and enhancement by N vacancies. Appl. Catal. B:Environ. 2019, 254, 270–282.

[100]

Prasad, U.; Prakash, J.; Gupta, S. K.; Zuniga, J.; Mao, Y. B.; Azeredo, B.; Kannan, A. N. M. Enhanced photoelectrochemical water splitting with Er- and W-codoped bismuth vanadate with WO3 heterojunction-based two-dimensional photoelectrode. ACS Appl. Mater. Interfaces 2019, 11, 19029–19039.

[101]

Guo, Y. R.; Liu, Q.; Li, Z. H.; Zhang, Z. G.; Fang, X. M. Enhanced photocatalytic hydrogen evolution performance of mesoporous graphitic carbon nitride co-doped with potassium and iodine. Appl. Catal. B:Environ. 2018, 221, 362–370.

[102]

Cao, S. W.; Huang, Q.; Zhu, B. C.; Yu, J. G. Trace-level phosphorus and sodium co-doping of g-C3N4 for enhanced photocatalytic H2 production. J. Power Sources 2017, 351, 151–159.

[103]

Bian, Z. Z.; Feng, Y. L.; Li, H. R.; Yu, H.; Wu, H. Adsorption-photocatalytic degradation and kinetic of sodium isobutyl xanthate using the nitrogen and cerium co-doping TiO2-coated activated carbon. Chemosphere 2021, 263, 128254.

[104]

Sun, M. X.; Yao, Y.; Ding, W.; Anandan, S. N/Ti3+ co-doping biphasic TiO2/Bi2WO6 heterojunctions: Hydrothermal fabrication and sonophotocatalytic degradation of organic pollutants. J. Alloys Compd. 2020, 820, 153172.

[105]

Khazaee, Z.; Mahjoub, A. R.; Cheshme Khavar, A. H.; Srivastava, V. Sillanpää, M. Synthesis of layered perovskite Ag, F-Bi2MoO6/rGO: A surface plasmon resonance and oxygen vacancy promoted nanocomposite as a visible-light photocatalyst. J. Photochem. Photobiol. A:Chem. 2019, 379, 130–143.

[106]

Liu, L. Z.; Huang, H. W.; Chen, F.; Yu, H. J.; Tian, N.; Zhang, Y. H.; Zhang, T. R. Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreduction performance of Bi4Ti3O12. Sci. Bull. 2020, 65, 934–943.

[107]

Liu, J. Y.; Wei, Z. D.; Shangguan, W. F. Defects engineering in photocatalytic water splitting materials. ChemCatChem 2019, 11, 6177–6189.

[108]

Xu, X.; Ding, X.; Yang, X. L.; Wang, P.; Li, S.; Lu, Z. X.; Chen, H. Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: Oxygen vacancy engineering, biotoxicity evaluation and mechanism study. J. Hazard. Mater. 2019, 364, 691–699.

[109]

Jiang, L. S.; Li, Y.; Wu, X. Y.; Zhang, G. K. Rich oxygen vacancies mediated bismuth oxysulfide crystals towards photocatalytic CO2-to-CH4 conversion. Sci. China Mater. 2021, 64, 2230–2241.

[110]

Wei, Y.; Su, H. R.; Zhang, Y. W.; Zheng, L. H.; Pan, Y.; Su, C.; Geng, W.; Long, M. C. Efficient peroxodisulfate activation by iodine vacancy rich bismuth oxyiodide: A vacancy induced mechanism. Chem. Eng. J. 2019, 375, 121971.

[111]

Li, M.; Zhang, Y. H.; Li, X. W.; Wang, Y. G.; Dong, F.; Ye, L. Q.; Yu, S. X.; Huang, H. W. Nature-derived approach to oxygen and chlorine dual-vacancies for efficient photocatalysis and photoelectrochemistry. ACS Sustain. Chem. Eng. 2018, 6, 2395–2406.

[112]

Zhou, G.; Guo, Z. J.; Shan, Y.; Wu, S. Y.; Zhang, J. L.; Yan, K.; Liu, L. Z.; Chu, P. K.; Wu, X. L. High-efficiency hydrogen evolution from seawater using hetero-structured T/Td phase ReS2 nanosheets with cationic vacancies. Nano Energy 2019, 55, 42–48.

[113]

Liu, X. M.; Zhao, L. L.; Xu, H. R.; Huang, Q. S.; Wang, Y. Q.; Hou, C. X.; Hou, Y. Y.; Wang, J.; Dang, F.; Zhang, J. T. Tunable cationic vacancies of cobalt oxides for efficient electrocatalysis in Li-O2 batteries. Adv. Energy Mater. 2020, 10, 2001415.

[114]

Zhu, X. D.; Xu, H. Y.; Yao, Y.; Liu, H.; Wang, J.; Pu, Y.; Feng, W.; Chen, S. H. Effects of Ag0-modification and Fe3+-doping on the structural, optical and photocatalytic properties of TiO2. RSC Adv. 2019, 9, 40003–40012.

[115]

Xiong, J.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 2018, 28, 1801983.

[116]

Di, J.; Chen, C.; Zhu, C.; Song, P.; Xiong, J.; Ji, M. X.; Zhou, J. D.; Fu, Q. D.; Xu, M. Z.; Hao, W. et al. Bismuth vacancy-tuned bismuth oxybromide ultrathin nanosheets toward photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2019, 11, 30786–30792.

[117]

Mao, C. L.; Cheng, H. G.; Tian, H.; Li, H.; Xiao, W. J.; Xu, H.; Zhao, J. C.; Zhang, L. Z. Visible light driven selective oxidation of amines to imines with BiOCl: Does oxygen vacancy concentration matter. Appl. Catal. B:Environ. 2018, 228, 87–96.

[118]

Sun, Y. J.; Wang, H.; Xing, Q.; Cui, W.; Li, J. Y.; Wu, S. J.; Sun, L. D. The pivotal effects of oxygen vacancy on Bi2MoO6: Promoted visible light photocatalytic activity and reaction mechanism. Chin. J. Catal. 2019, 40, 647–655.

[119]

Bai, J. W.; Sun, J. Y.; Zhu, X. H.; Liu, J. D.; Zhang, H. J.; Yin, X. B.; Liu, L. Enhancement of solar-driven photocatalytic activity of BiOI nanosheets through predominant exposed high energy facets and vacancy engineering. Small 2020, 16, 1904783.

[120]

Song, Z.; Dong, X. L.; Fang, J. D.; Xiong, C. H.; Wang, N.; Tang, X. M. Improved photocatalytic degradation of perfluorooctanoic acid on oxygen vacancies-tunable bismuth oxychloride nanosheets prepared by a facile hydrolysis. J. Hazard. Mater. 2019, 377, 371–380.

[121]

Wang, J. Z.; Cao, C. S.; Zhang, Y.; Zhang, Y. Q.; Zhu, L. Y. Underneath mechanisms into the super effective degradation of PFOA by BiOF nanosheets with tunable oxygen vacancies on exposed (101) facets. Appl. Catal. B:Environ. 2021, 286, 119911.

[122]

Ji, M. X.; Chen, R.; Di, J.; Liu, Y. L.; Li, K.; Chen, Z. G.; Xia, J. X.; Li, H. M. Oxygen vacancies modulated Bi-rich bismuth oxyiodide microspheres with tunable valence band position to boost the photocatalytic activity. J Colloid Interface Sci. 2019, 533, 612–620.

[123]

Guan, M. L.; Xiao, C.; Zhang, J.; Fan, S. J.; An, R.; Cheng, Q. M.; Xie, J. F.; Zhou, M.; Ye, B. J.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 2013, 135, 10411–10417.

[124]

Huang, S. N.; Tian, F.; Dai, J. W.; Tian, X. S.; Li, G. F.; Liu, Y. L.; Chen, Z. Q.; Chen, R. Highly efficient degradation of chlorophenol over bismuth oxides upon near-infrared irradiation: Unraveling the effect of Bi-O-Bi-O defects cluster and 1O2 involved process. Appl. Catal. B:Environ. 2021, 298, 120576.

[125]

Ding, J.; Dai, Z.; Tian, F.; Zhou, B.; Zhao, B.; Zhao, H. P.; Chen, Z. Q.; Liu, Y. L.; Chen, R. Generation of defect clusters for 1O2 production for molecular oxygen activation in photocatalysis. J. Mater. Chem. A 2017, 5, 23453–23459.

[126]

Wu, X. L.; Ng, Y. H.; Wang, L.; Du, Y.; Dou, S. X.; Amal, R.; Scott, J. Improving the photo-oxidative capability of BiOBr via crystal facet engineering. J. Mater. Chem. A 2017, 5, 8117–8124.

[127]

Zhao, Y.; Shao, C. T.; Lin, Z. X.; Jiang, S. J.; Song, S. Q. Low-energy facets on CdS allomorph junctions with optimal phase ratio to boost charge directional transfer for photocatalytic H2 fuel evolution. Small 2020, 16, 2000944.

[128]

Wang, X.; Hisatomi, T.; Liang, J. W.; Wang, Z.; Xiang, Y. J.; Zhao, Y. H.; Dai, X. Y.; Takata, T.; Domen, K. Facet engineering of LaNbON2 transformed from LaKNaNbO5 for enhanced photocatalytic O2 evolution. J. Mater. Chem. A 2020, 8, 11743–11751.

[129]

Chen, S.; Huang, D. L.; Zeng, G. M.; Xue, W. J.; Lei, L.; Xu, P.; Deng, R.; Li, J.; Cheng, M. In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: Synergism of interfacial coupling and hole-transfer. Chem. Eng. J. 2020, 382, 122840.

[130]

Wang, A.; Wu, S. J.; Dong, J. L.; Wang, R. X.; Wang, J. W.; Zhang, J. L.; Zhong, S. X.; Bai, S. Interfacial facet engineering on the Schottky barrier between plasmonic Au and TiO2 in boosting the photocatalytic CO2 reduction under ultraviolet and visible light irradiation. Chem. Eng. J. 2021, 404, 127145.

[131]

Yu, H. B.; Huang, J. H.; Jiang, L. B.; Yuan, X. Z.; Yi, K. X.; Zhang, W.; Zhang, J.; Chen, H. Y. Steering photo-excitons towards active sites: Intensified substrates affinity and spatial charge separation for photocatalytic molecular oxygen activation and pollutant removal. Chem. Eng. J. 2021, 408, 127334.

[132]

Chen, Q.; Chen, X. J.; Jiang, Q. R.; Zheng, Z. P.; Song, Z. J.; Zhao, Z. Y.; Xie, Z. X.; Kuang, Q. Constructing oxide/sulfide in-plane heterojunctions with enlarged internal electric field for efficient CO2 photoreduction. Appl. Catal. B:Environ. 2021, 297, 120394.

[133]

Li, J.; Yu, Y.; Zhang, L. Z. Bismuth oxyhalide nanomaterials: Layered structures meet photocatalysis. Nanoscale 2014, 6, 8473–8488.

[134]

Jiang, J.; Zhao, K.; Xiao, X. Y.; Zhang, L. Z. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2012, 134, 4473–4476.

[135]

Li, H.; Zhang, L. Z. Photocatalytic performance of different exposed crystal facets of BiOCl. Curr. Opin. Green Sustain. Chem. 2017, 6, 48–56.

[136]

Wang, Z. D.; Chu, Z.; Dong, C. W.; Wang, Z.; Yao, S. Y.; Gao, H.; Liu, Z. Y.; Liu, Y.; Yang, B.; Zhang, H. Ultrathin BiOX (X = Cl, Br, I) nanosheets with exposed {001} facets for photocatalysis. ACS Appl. Nano Mater. 2020, 3, 1981–1991.

[137]

Ng, S. F.; Foo, J. J.; Ong W. J. Solar-powered chemistry: Engineering low-dimensional carbon nitride-based nanostructures for selective CO2 conversion to C1–C2 products. InfoMat. 2022, 4, e12279.

[138]

Li, J.; Zhang, L. Z.; Li, Y. J.; Yu, Y. Synthesis and internal electric field dependent photoreactivity of Bi3O4Cl single-crystalline nanosheets with high {001} facet exposure percentages. Nanoscale 2014, 6, 167–171.

[139]

Kong, X. Y.; Tong, T.; Ng, B. J.; Low, J.; Zeng, T. H.; Mohamed, A. R.; Yu, J. G.; Chai, S. P. Topotactic transformation of bismuth oxybromide into bismuth tungstate: Bandgap modulation of single-crystalline {001}-faceted nanosheets for enhanced photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 26991–27000.

[140]

Niu, P.; Wu, T. T.; Wen, L.; Tan, J.; Yang, Y. Q.; Zheng, S. J.; Liang, Y.; Li, F.; Irvine, J. T. S.; Liu, G. et al. Substitutional carbon-modified anatase TiO2 decahedral plates directly derived from titanium oxalate crystals via topotactic transition. Adv. Mater. 2018, 30, 1705999.

[141]

Li, M.; Yu, S. X.; Huang, H. W.; Li, X. W.; Feng, Y. B.; Wang, C.; Wang, Y. G.; Ma, T. Y.; Guo, L.; Zhang, Y. H. Unprecedented eighteen-faceted BiOCl with a ternary facet junction boosting cascade charge flow and photo-redox. Angew. Chem., Int. Ed. 2019, 58, 9517–9521.

[142]

Xu, Y. G.; Ma, Y.; Ji, H. Y.; Huang, S. Q.; Xie, M.; Zhao, Y.; Xu, H.; Li, H. M. Enhanced long-wavelength light utilization with polyaniline/bismuth-rich bismuth oxyhalide composite towards photocatalytic degradation of antibiotics. J. Colloid Interface Sci. 2019, 537, 101–111.

[143]

Jin, X. L.; Lv, C. D.; Zhou, X.; Xie, H. Q.; Sun, S. F.; Liu, Y.; Meng, Q. Q.; Chen, G. A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity. Nano Energy 2019, 64, 103955.

[144]

Chen, X.; Zhang, J.; Liu, L.; Hu, B. R.; Zhao, Y. L.; Zhao, S.; Zhao, W. T.; Li, S.; Hai, X. Tailored fabrication of interface-rich hierarchical Bi24O31Br10 with enhanced photocatalytic performance. Appl. Surf. Sci. 2019, 491, 1–8.

[145]

Xu, B. R.; Gao, Y. Q.; Li, Y. D.; Liu, S.; Lv, D.; Zhao, S. J.; Gao, H.; Yang, G. Q.; Li, N.; Ge, L. Synthesis of Bi3O4Cl nanosheets with oxygen vacancies: The effect of defect states on photocatalytic performance. Appl. Surf. Sci. 2020, 507, 144806.

[146]

Li, Y. J.; Liu, T.; Cheng, Z. Y.; Peng, Y.; Yang, S. H.; Zhang, Y. L. Facile synthesis of high crystallinity and oxygen vacancies rich bismuth oxybromide upconversion nanosheets by air-annealing for UV-vis-NIR broad spectrum driven Bisphenol A degradation. Chem. Eng. J. 2021, 421, 127868.

[147]

Wei, X. J.; Akbar, M. U.; Raza, A.; Li, G. A review on bismuth oxyhalide based materials for photocatalysis. Nanoscale Adv. 2021, 3, 3353–3372.

[148]

Lee, K. H.; Shin, W. H.; Kim, H. S.; Cho, H. J.; Kim, S. W.; Kim, S. I. Important role of Cu in suppressing bipolar conduction in Bi-rich (Bi, Sb)2Te3. Scripta Mater. 2020, 186, 225–229.

[149]

Das, S. C.; Katiyal, S.; Shripathi, T. Impedance spectroscopy of Bi-rich BiFeO3: Twin thermal-activations. J. Appl. Phys. 2018, 124, 174101.

[150]

Liu, J.; Guo, S.; Wu, H. Z.; Zhang, X. L.; Li, J.; Zhou, K. Synergetic effects of Bi5+ and oxygen vacancies in Bismuth(V)-rich Bi4O7 nanosheets for enhanced near-infrared light driven photocatalysis. J. Mater. Sci. Technol. 2021, 85, 1–10.

[151]

Ye, L. Q.; Jin, X. L.; Liu, C.; Ding, C. H.; Xie, H. Q.; Chu, K. H.; Wong, P. K. Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels. Appl. Catal. B:Environ. 2016, 187, 281–290.

[152]

Ren, Y. J.; Zeng, D. Q.; Ong, W. J. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chin. J. Catal. 2019, 40, 289–319.

[153]

Li, X.; Shen, R. C.; Ma, S.; Chen, X. B.; Xie, J. Graphene-based heterojunction photocatalysts. Appl. Surf. Sci. 2018, 430, 53–107.

[154]

Bian, J.; Feng, J. N.; Zhang, Z. Q.; Li, Z. J.; Zhang, Y. H.; Liu, Y. D.; Ali, S.; Qu, Y.; Bai, L. L.; Xie, J. J. et al. Dimension-matched zinc phthalocyanine/BiVO4 ultrathin nanocomposites for CO2 reduction as efficient wide-visible-light-driven photocatalysts via a cascade charge transfer. Angew. Chem., Int. Ed. 2019, 58, 10873–10878.

[155]

Li, B. R.; Chu, J. Y.; Li, Y.; Meng, M. J.; Cui, Y. H.; Li, Q. D.; Feng, Y. H. Preparation and performance of visible-light-driven Bi2O3/ZnS heterojunction functionalized porous CA membranes for effective degradation of rhodamine B. Phys. Status Solidi (A) 2018, 215, 1701061.

[156]

Ma, N.; Chen, A. C.; Bian, Z. Y.; Yang, Y. J.; Wang, H. In situ synthesis of a cadmium sulfide/reduced graphene oxide/bismuth Z-scheme oxyiodide system for enhanced photocatalytic performance in chlorinated paraben degradation. Chem. Eng. J. 2019, 359, 530–541.

[157]

Majhi, D.; Das, K.; Mishra, A.; Dhiman, R.; Mishra, B. G. One pot synthesis of CdS/BiOBr/Bi2O2CO3: A novel ternary double Z-scheme heterostructure photocatalyst for efficient degradation of atrazine. Appl. Catal. B:Environ. 2020, 260, 118222.

[158]
Wei, Z. H.; Wang, Y. F.; Li, Y. Y.; Zhang, L.; Yao, H. C.; Li, Z. J. Enhanced photocatalytic CO2 reduction activity of Z-scheme CdS/BiVO4 nanocomposite with thinner BiVO4 nanosheets. J. CO2 Utiliz. 2018, 28, 15–25.
[159]

Mou, Q. P.; Guo, Z. L.; Chai, Y. M.; Liu, B.; Liu, C. G. Visible-light assisted photoreduction of CO2 using CdS-decorated Bi24O31Br10. Mater. Sci. Semicond. Process. 2021, 134, 106011.

[160]

Yan, J. Y.; Wang, C. H.; Ma, H.; Li, Y. Y.; Liu, Y. C.; Suzuki, N.; Terashima, C.; Fujishima, A.; Zhang, X. T. Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction. Appl. Catal. B:Environ. 2020, 268, 118401.

[161]

Brenner, T. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D. Hybrid organic–inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 2016, 1, 15007.

[162]

Huang, H. W.; Zhao, J. W.; Du, Y. J.; Zhou, C.; Zhang, M. L.; Wang, Z.; Weng, Y. X.; Long, J. L.; Hofkens, J.; Steele, J. A. et al. Direct Z-scheme heterojunction of semicoherent FAPbBr3/Bi2WO6 interface for photoredox reaction with large driving force. ACS Nano 2020, 14, 16689–16697.

[163]

Liang, J. H.; Chen, D.; Yao, X.; Zhang, K. X.; Qu, F. L.; Qin, L. S.; Huang, Y. X.; Li, J. H. Recent progress and development in inorganic halide perovskite quantum dots for photoelectrochemical applications. Small 2020, 16, 1903398.

[164]

Zhu, X. L.; Lin, Y. X.; San Martin, J.; Sun, Y.; Zhu, D.; Yan, Y. Lead halide perovskites for photocatalytic organic synthesis. Nat. Commun. 2019, 10, 2843.

[165]

Wang, J. C.; Wang, J.; Li, N. Y.; Du, X. Y.; Ma, J.; He, C. H.; Li, Z. Q. Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 31477–31485.

[166]

Zhao, Y.; Zeng, Q. S.; Yu, Y.; Feng, T. L.; Zhao, Y. J.; Wang, Z. D.; Li, Y.; Liu, C. M.; Liu, J. J.; Wei, H. T. et al. Enhanced charge separation and photocatalytic hydrogen evolution in carbonized-polymer-dot-coupled lead halide perovskites. Mater. Horiz. 2020, 7, 2719–2725.

[167]

Quan, Y.; Wang, B.; Liu, G. P.; Li, H. M.; Xia, J. X. Carbonized polymer dots modified ultrathin Bi12O17Cl2 nanosheets Z-scheme heterojunction for robust CO2 photoreduction. Chem. Eng. Sci. 2021, 232, 116338.

[168]

Wang, B.; Di, J.; Lu, L.; Yan, S. C.; Liu, G. P.; Ye, Y. Z.; Li, H. T.; Zhu, W. S.; Li, H. M.; Xia, J. X. Sacrificing ionic liquid-assisted anchoring of carbonized polymer dots on perovskite-like PbBiO2Br for robust CO2 photoreduction. Appl. Catal. B:Environ. 2019, 254, 551–559.

[169]

Xia, C. L.; Zhu, S. J.; Feng, T. L.; Yang, M. X.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019, 6, 1901316.

[170]

Xia, C. L.; Zhu, S. J.; Zhang, S. T.; Zeng, Q. S.; Tao, S. Y.; Tian, X. Z.; Li, Y. F.; Yang, B. Carbonized polymer dots with tunable room-temperature phosphorescence lifetime and wavelength. ACS Appl. Mater. Interfaces 2020, 12, 38593–38601.

[171]

Wang, Z. F.; Liu, Y.; Zhen, S. J.; Li, X. X.; Zhang, W. G.; Sun, X.; Xu, B. Y.; Wang, X.; Gao, Z. H.; Meng, X. G. Gram-scale synthesis of 41% efficient single-component white-light-emissive carbonized polymer dots with hybrid fluorescence/phosphorescence for white light-emitting diodes. Adv. Sci. 2020, 7, 1902688.

[172]

Wang, B.; Zhao, J. Z.; Chen, H. L.; Weng, Y. X.; Tang, H.; Chen, Z. R.; Zhu, W. S.; She, Y. B.; Xia, J. X.; Li, H. M. Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction. Appl. Catal. B:Environ. 2021, 293, 120182.

[173]

Lu, J. J.; Chen, Y. H.; Li, L. N.; Cai, X. T.; Zhong, S. X.; Wu, L. J.; Chen, J. R.; Bai, S. Facet engineering on the interface of BiOCl-PbS heterostructures for enhanced broad-spectrum photocatalytic H2 production. Chem. Eng. J. 2019, 362, 1–11.

[174]

Sun, D. F.; Huang, L.; Li, L.; Yu, Y.; Du, G. H.; Xu, B. S. Plasma enhanced Bi/Bi2O2CO3 heterojunction photocatalyst via a novel in-situ method. J. Colloid Interface Sci. 2020, 571, 80–89.

[175]

Jayachitra, S.; Ravi, P.; Murugan, P.; Sathish, M. Supercritically exfoliated Bi2Se3 nanosheets for enhanced photocatalytic hydrogen production by topological surface states over TiO2. J. Colloid Interface Sci. 2022, 605, 871–880.

[176]

Bai, S.; Wang, L. L.; Li, Z. Q.; Xiong, Y. J. Facet-engineered surface and interface design of photocatalytic materials. Adv. Sci. 2017, 4, 1600216.

[177]

Dong, F.; Xiong, T.; Sun, Y. J.; Zhao, Z. W.; Zhou, Y.; Feng, X.; Wu, Z. B. A semimetal bismuth element as a direct plasmonic photocatalyst. Chem. Commun. 2014, 50, 10386–10389.

[178]

Liu, J.; Chen, S. S.; Qian, D. P.; Gautam, B.; Yang, G. F.; Zhao, J. B.; Bergqvist, J.; Zhang, F. J.; Ma, W.; Ade, H. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 2016, 1, 16089.

[179]

Lin, L. H.; Hisatomi, T.; Chen, S. S.; Takata, T.; Domen, K. Visible-light-driven photocatalytic water splitting: Recent progress and challenges. Trends Chem. 2020, 2, 813–824.

[180]

Liu, C. A.; Fu, Y. J.; Zhao, J.; Wang, H. B.; Huang, H.; Liu, Y.; Dou, Y. J.; Shao, M. W.; Kang, Z. H. All-solid-state Z-scheme system of NiO/CDs/BiVO4 for visible light-driven efficient overall water splitting. Chem. Eng. J. 2019, 358, 134–142.

[181]

Wei, Z. D.; Zhu, Y.; Guo, W. Q.; Liu, J. Y.; Fang, W. J.; Jiang, Z.; Shangguan, W. F. Enhanced twisting degree assisted overall water splitting on a novel nano-dodecahedron BiVO4-based heterojunction. Appl. Catal. B: Environ. 2020, 266, 118664.

[182]

Dong, C. W.; Lu, S. Y.; Yao, S. Y.; Ge, R.; Wang, Z. D.; Wang, Z.; An, P. F.; Liu, Y.; Yang, B.; Zhang, H. Colloidal synthesis of ultrathin monoclinic BiVO4 nanosheets for Z-scheme overall water splitting under visible light. ACS Catal. 2018, 8, 8649–8658.

[183]

Melo, M. A. Jr.; Wu, Z. K.; Nail, B. A.; De Denko, A. T.; Nogueira, A. F.; Osterloh, F. E. Surface photovoltage measurements on a particle tandem photocatalyst for overall water splitting. Nano Lett. 2018, 18, 805–810.

[184]

Wang, Q.; Okunaka, S.; Tokudome, H.; Hisatomi, T.; Nakabayashi, M.; Shibata, N.; Yamada, T.; Domen, K. Printable photocatalyst sheets incorporating a transparent conductive mediator for Z-scheme water splitting. Joule 2018, 2, 2667–2680.

[185]

Wang, J. M.; Kuo, M. T.; Zeng, P.; Xu, L.; Chen, S. T.; Peng, T. Y. Few-layer BiVO4 nanosheets decorated with SrTiO3: Rh nanoparticles for highly efficient visible-light-driven overall water splitting. Appl. Catal. B: Environ. 2020, 279, 119377.

[186]

Feng, J. N.; Bian, J.; Bai, L. L.; Xi, S. B.; Wang, Y.; Chen, C. L.; Jing, L. Q. Efficient wide-spectrum photocatalytic overall water splitting over ultrathin molecular nickel phthalocyanine/BiVO4 Z-scheme heterojunctions without noble metals. Appl. Catal. B: Environ. 2021, 295, 120260.

[187]

Xu, H. M.; Fan, W. Q.; Zhao, Y.; Chen, B. Y.; Gao, Y.; Chen, X.; Xu, D. B.; Shi, W. D. Amorphous iron(III)-borate decorated electrochemically treated-BiVO4 photoanode for efficient photoelectrochemical water splitting. Chem. Eng. J. 2021, 411, 128480.

[188]

Wang, S. C.; Chen, P.; Yun, J. H.; Hu, Y. X.; Wang, L. Z. An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2017, 56, 8500–8504.

[189]
Brown, T. Japan’s Road Map for Fuel Ammonia [Online]. Ammonia Energy Association, 2021. https://www.ammoniaenergy. org/articles/japans-road-map-for-fuel-ammonia/ (accessed Sep 18, 2021).
[190]

Xiao, C. L.; Hu, H.; Zhang, X. Y.; MacFarlane, D. R. Nanostructured gold/bismutite hybrid heterocatalysts for plasmon-enhanced photosynthesis of ammonia. ACS Sustain. Chem. Eng. 2017, 5, 10858–10863.

[191]

Sun, L. L.; Wu, W.; Tian, Q. Y.; Lei, M.; Liu, J.; Xiao, X. H.; Zheng, X. D.; Ren, F.; Jiang, C. Z. In situ oxidation and self-assembly synthesis of dumbbell-like α-Fe2O3/Ag/AgX (X = Cl, Br, I) heterostructures with enhanced photocatalytic properties. ACS Sustain. Chem. Eng. 2016, 4, 1521–1530.

[192]

Ong, W. J.; Putri, L. K.; Tan, L. L.; Chai, S. P.; Yong, S. T. Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide. Appl. Catal. B:Environ. 2016, 180, 530–543.

[193]

Putri, L. K.; Ong, W. J.; Chang, W. S.; Chai, S. P. Enhancement in the photocatalytic activity of carbon nitride through hybridization with light-sensitive AgCl for carbon dioxide reduction to methane. Catal. Sci. Technol. 2016, 6, 744–754.

[194]

Gao, X. M.; Shang, Y. Y.; Gao, K. L.; Fu, F. Plasmon sensitized heterojunction 2D ultrathin Ag/AgI-δ-Bi2O3 for enhanced photocatalytic nitrogen fixation. Nanomaterials 2019, 9, 781.

[195]

Li, H.; Shang, J.; Ai, Z. H.; Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J. Am. Chem. Soc. 2015, 137, 6393–6399.

[196]

Gao, X. M.; Shang, Y. Y.; Liu, L. B.; Fu, F. Chemisorption-enhanced photocatalytic nitrogen fixation via 2D ultrathin p-n heterojunction AgCl/δ-Bi2O3 nanosheets. J. Catal. 2019, 371, 71–80.

[197]

Gao, X. M.; Shang, Y. Y.; Liu, L. B.; Gao, K. L. Ag plasmon resonance promoted 2D AgBr-δ-Bi2O3 nanosheets with enhanced photocatalytic ability. J. Alloys Compd. 2019, 803, 565–575.

[198]

Sheng, H.; Zhang, H. N.; Song, W. J.; Ji, H. W.; Ma, W. H.; Chen, C. C.; Zhao, J. C. Activation of water in titanium dioxide photocatalysis by formation of surface hydrogen bonds: An in situ IR spectroscopy study. Angew. Chem., Int. Ed. 2015, 54, 5905–5909.

[199]

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

[200]

Zhang, C. M.; Chen, G.; Lv, C. D.; Yao, Y.; Xu, Y. L.; Jin, X. L.; Meng, Q. Q. Enabling nitrogen fixation on Bi2WO6 photocatalyst by c-PAN surface decoration. ACS Sustain. Chem. Eng. 2018, 6, 11190–11195.

[201]

Chen, Y.; Jia, G.; Hu, Y. F.; Fan, G. Z.; Tsang, Y. H.; Li, Z. S.; Zou, Z. G. Two-dimensional nanomaterials for photocatalytic CO2 reduction to solar fuels. Sustain. Energy Fuels 2017, 1, 1875–1898.

[202]
Ong, W. J.; Putri, L. K.; Mohamed, A. R. Rational design of carbon-based 2D nanostructures for enhanced photocatalytic CO2 reduction: A dimensionality perspective. Chem. -Eur. J. 2020, 26, 9710–9748.
[203]

Li, R. J.; Luan, Q. J.; Dong, C.; Dong, W. J.; Tang, W.; Wang, G.; Lu, Y. F. Light-facilitated structure reconstruction on self-optimized photocatalyst TiO2@BiOCl for selectively efficient conversion of CO2 to CH4. Appl. Catal. B:Environ. 2021, 286, 119832.

[204]

Arif, M.; Min, Z.; Yuting, L.; Yin, H. F.; Liu, X. H. A Bi2WO6-based hybrid heterostructures photocatalyst with enhanced photodecomposition and photocatalytic hydrogen evolution through Z-scheme process. J. Ind. Eng. Chem. 2019, 69, 345–357.

[205]

Wu, X. L.; Zhang, Q. T.; Su, C. L. Bi2MoO6/Bi2S3 S-scheme heterojunction for efficient photocatalytic oxygen evolution. FlatChem 2021, 27, 100244.

[206]

Ma, Y. Y.; Jiang, X.; Sun, R. K.; Yang, J. L.; Jiang, X. L.; Liu, Z. Q.; Xie, M. Z.; Xie, E. Q.; Han, W. H. Z-scheme Bi2O2.33/Bi2S3 heterojunction nanostructures for photocatalytic overall water splitting. Chem. Eng. J. 2020, 382, 123020.

[207]

Zhang, Z. Y.; Huang, J. D.; Fang, Y. R.; Zhang, M. Y.; Liu, K. C.; Dong, B. A nonmetal plasmonic Z-scheme photocatalyst with UV- to NIR-driven photocatalytic protons reduction. Adv. Mater. 2017, 29, 1606688.

[208]

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Ma, L. B.; Zhu, G. Y.; Jin, Z. Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale 2019, 11, 10439–10445.

[209]

Zhang, K. X.; Su, H.; Wang, H. H.; Zhang, J. J.; Zhao, S. Y.; Lei, W. W.; Wei, X.; Li, X. H.; Chen, J. S. Atomic-scale Mott-Schottky heterojunctions of boron nitride monolayer and graphene as metal-free photocatalysts for artificial photosynthesis. Adv. Sci. 2018, 5, 1800062.

[210]
Du, J.; Yang, H.; Sun, L. C. 2D materials for solar fuels via artificial photosynthesis. Natl. Sci. Rev., in press, https://doi.org/10.1093/nsr/nwab116.
[211]

Ng, S. F.; Lau, M. Y. L.; Ong, W. J. Engineering layered double hydroxide-based photocatalysts toward artificial photosynthesis: State-of-the-art progress and prospects. Sol. RRL 2021, 5, 2000535.

[212]

Zhang, W. H.; Mohamed, A. R.; Ong, W. J. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now. Angew. Chem., Int. Ed. 2020, 59, 22894–22915.

[213]

Ong, W. J. 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: Why does face-to-face interface matter. Front. Mater. 2017, 4, 11.

[214]

Su, J.; Li, G. D.; Li, X. H.; Chen, J. S. 2D/2D heterojunctions for catalysis. Adv. Sci. 2019, 6, 1801702.

[215]

Hou, H. L.; Zeng, X. K.; Zhang, X. W. 2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications. Sci. China Mater. 2020, 63, 2119–2152.

[216]

Ong, W. J.; Shak, K. P. Y. 2D/2D heterostructured photocatalysts: An emerging platform for artificial photosynthesis. Sol. RRL 2020, 4, 2000132.

[217]
Kumar, P.; Laishram, D.; Sharma, R. K.; Vinu, A.; Hu, J. G.; Kibria, G. Boosting photocatalytic activity using carbon nitride based 2D/2D van der Waals heterojunctions. Chem. Mater., in press, https://doi.org/10.1021/acs.chemmater.1c03166.
[218]

Huang, Y. H.; Wang, K.; Guo, T.; Li, J.; Wu, X. Y.; Zhang, G. K. Construction of 2D/2D Bi2Se3/g-C3N4 nanocomposite with high interfacial charge separation and photo-heat conversion efficiency for selective photocatalytic CO2 reduction. Appl. Catal. B:Environ. 2020, 277, 119232.

[219]

Lu, M. F.; Li, Q. Q.; Zhang, C. L.; Fan, X. X.; Li, L.; Dong, Y. M.; Chen, G. Q.; Shi, H. F. Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer. Carbon 2020, 160, 342–352.

[220]

Li, J.; Huang, B. J.; Guo, Q.; Guo, S.; Peng, Z. K.; Liu, J.; Tian, Q. Y.; Yang, Y. P.; Xu, Q.; Liu, Z. Y. et al. Van der Waals heterojunction for selective visible-light-driven photocatalytic CO2 reduction. Appl. Catal. B:Environ. 2021, 284, 119733.

[221]

She, S. J.; Zhang, X. Y.; Wu, X. Y.; Li, J.; Zhang, G. K. The fabrication of two-dimensional g-C3N4/NaBiO3·2H2O heterojunction for improved photocatalytic CO2 reduction: DFT study and mechanism unveiling. J. Colloid Interface Sci. 2021, 604, 122–130.

[222]

Xu, Y. X.; Jin, X. L.; Ge, T.; Xie, H. Q.; Sun, R. X.; Su, F. Y.; Li, X.; Ye, L. Q. Realizing efficient CO2 photoreduction in Bi3O4Cl: Constructing van der Waals heterostructure with g-C3N4. Chem. Eng. J. 2021, 409, 128178.

[223]

Huo, Y.; Zhang, J. F.; Wang, Z. L.; Dai, K.; Pan, C. S.; Liang, C. H. Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction. J. Colloid Interface Sci. 2021, 585, 684–693.

[224]

Yang, C.; Wang, Y. J.; Yu, J. G.; Cao, S. W. Ultrathin 2D/2D graphdiyne/Bi2WO6 heterojunction for gas-phase CO2 photoreduction. ACS Appl. Energy Mater. 2021, 4, 8734–8738.

[225]

Jiang, R. R.; Wu, D. H.; Lu, G. H.; Yan, Z. H.; Liu, J. C. Modified 2D-2D ZnIn2S4/BiOCl van der Waals heterojunctions with CQDs: Accelerated charge transfer and enhanced photocatalytic activity under vis- and NIR-light. Chemosphere 2019, 227, 82–92.

[226]

Zhu, G. Q.; Li, S. P.; Gao, J. Z.; Zhang, F. C.; Liu, C. L.; Wang, Q. Z.; Hojamberdiev, M. Constructing a 2D/2D Bi2O2CO3/Bi4O5Br2 heterostructure as a direct Z-scheme photocatalyst with enhanced photocatalytic activity for NOx removal. Appl. Surf. Sci. 2019, 493, 913–925.

[227]

Lv, Y. R.; He, R. K.; Chen, Z. Y.; Li, X.; Xu, Y. H. Fabrication of hierarchical copper sulfide/bismuth tungstate p-n heterojunction with two-dimensional (2D) interfacial coupling for enhanced visible-light photocatalytic degradation of glyphosate. J. Colloid Interface Sci. 2020, 560, 293–302.

[228]

Fan, H. X.; Zhou, H. L.; Li, W. J.; Gu, S. N.; Zhou, G. W. Facile fabrication of 2D/2D step-scheme In2S3/Bi2O2CO3 heterojunction towards enhanced photocatalytic activity. Appl. Surf. Sci. 2020, 504, 144351.

[229]

Yang, R. X.; Zhu, Z. J.; Hu, C. Y.; Zhong, S.; Zhang, L. S.; Liu, B. J.; Wang, W. One-step preparation (3D/2D/2D) BiVO4/FeVO4@rGO heterojunction composite photocatalyst for the removal of tetracycline and hexavalent chromium ions in water. Chem. Eng. J. 2020, 390, 124522.

[230]

Tie, L. N.; Yang, S. Y.; Yu, C. F.; Chen, H.; Liu, Y. M.; Dong, S. Y.; Sun, J. Y.; Sun, J. H. In situ decoration of ZnS nanoparticles with Ti3C2 MXene nanosheets for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2019, 545, 63–70.

[231]

Cheng, L.; Li, X.; Zhang, H. W.; Xiang, Q. J. Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation. J. Phys. Chem. Lett. 2019, 10, 3488–3494.

[232]

Zuo, G. C.; Wang, Y. T.; Teo, W. L.; Xie, A. M.; Guo, Y.; Dai, Y. X.; Zhou, W. Q.; Jana, D.; Xian, Q. M.; Dong, W. et al. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2Tx MXene for photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 11287–11292.

[233]

Yang, C.; Tan, Q. Y.; Li, Q.; Zhou, J.; Fan, J. J.; Li, B.; Sun, J.; Lv, K. L. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea. Appl. Catal. B:Environ. 2020, 268, 118738.

[234]

He, F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Ho, W. K.; Macyk, W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B:Environ. 2020, 272, 119006.

[235]

Peng, J. H.; Chen, X. Z.; Ong, W. J.; Zhao, X. J.; Li, N. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: Insights into electro- and photocatalysis. Chem 2019, 5, 18–50.

[236]

Cao, S. W.; Shen, B. J.; Tong, T.; Fu, J. W.; Yu, J. G. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136.

[237]

Wu, H. L.; Li, X. B.; Tung, C. H.; Wu, L. Z. Semiconductor quantum dots: An emerging candidate for CO2 photoreduction. Adv. Mater. 2019, 31, 1900709.

[238]

Chen, P. F.; Ong, W. J.; Shi, Z. H.; Zhao, X. J.; Li, N. Pb-based halide perovskites: Recent advances in photo(electro)catalytic applications and looking beyond. Adv. Funct. Mater. 2020, 30, 1909667.

[239]

Chen, C.; Hu, J. D.; Yang, X. G.; Yang, T. Y.; Qu, J. F.; Guo, C. X.; Li, C. M. Ambient-stable black phosphorus-based 2D/2D S-scheme heterojunction for efficient photocatalytic CO2 reduction to syngas. ACS Appl. Mater. Interfaces 2021, 13, 20162–20173.

[240]

Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.

[241]

Xia, P. F.; Cao, S. W.; Zhu, B. W.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem., Int. Ed. 2020, 59, 5218–5225.

[242]
Wang, Z. L.; Cheng, B.; Zhang, L. Y.; Yu, J. G.; Tan, H. Y. BiOBr/NiO S-scheme heterojunction photocatalyst for CO2 photoreduction. Sol. RRL, in press, DOI: 10.1002/solr.202100587.
[243]

Qian, K.; Xia, L.; Jiang, Z. F.; Wei, W.; Chen, L. L.; Xie, J. M. In situ chemical transformation synthesis of Bi4Ti3O12/I-BiOCl 2D/2D heterojunction systems for water pollution treatment and hydrogen production. Catal. Sci. Technol. 2017, 7, 3863–3875.

[244]

Lv, J. L.; Zhang, J. F.; Liu, J.; Li, Z.; Dai, K.; Liang, C. H. Bi SPR-promoted Z-scheme Bi2MoO6/CdS-diethylenetriamine composite with effectively enhanced visible light photocatalytic hydrogen evolution activity and stability. ACS Sustain. Chem. Eng. 2018, 6, 696–706.

[245]

Hu, J. D.; Chen, D. Y.; Mo, Z.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Xu, H.; Lu, J. M. Z-scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities. Angew. Chem., Int. Ed. 2019, 58, 2073–2077.

[246]

Tvrdy, K.; Frantsuzov, P. A.; Kamat, P. V. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl. Acad. Sci. USA 2011, 108, 29–34.

[247]

Zhu, H. M.; Lian, T. Q. Enhanced multiple exciton dissociation from CdSe quantum rods: The effect of nanocrystal shape. J. Am. Chem. Soc. 2012, 134, 11289–11297.

[248]

Li, J. X.; Ye, C.; Li, X. B.; Li, Z. J.; Gao, X. W.; Chen, B.; Tung, C. H.; Wu, L. Z. A redox shuttle accelerates O2 evolution of photocatalysts formed in situ under visible light. Adv. Mater. 2017, 29, 1606009.

[249]

Li, Y.; Sun, Z. H.; Zhu, S. M.; Liao, Y. L.; Chen, Z. X.; Zhang, D. Fabrication of BiVO4 nanoplates with active facets on graphene sheets for visible-light photocatalyst. Carbon 2015, 94, 599–606.

[250]

Liu, S. Y.; Pan, J.; Li, X.; Meng, X.; Yuan, H.; Li, Y.; Zhao, Y. X.; Wang, D. W.; Ma, J.; Zhu, S. M. et al. In situ modification of BiVO4 nanosheets on graphene for boosting photocatalytic water oxidation. Nanoscale 2020, 12, 14853–14862.

[251]

Ning, S. B.; Shi, X. Q.; Zhang, H. W.; Lin, H. X.; Zhang, Z. Z.; Long, J. L.; Li, Y.; Wang, X. X. Reconstructing dual-induced {001} facets bismuth oxychloride nanosheets heterostructures: An effective strategy to promote photocatalytic oxygen evolution. Sol. RRL 2019, 3, 1900059.

[252]

Zuo, G. C.; Wang, Y. T.; Teo, W. L.; Xie, A. M.; Guo, Y.; Dai, Y. X.; Zhou, W. Q.; Jana, D.; Xian, Q. M.; Dong, W. et al. Enhanced photocatalytic water oxidation by hierarchical 2D-Bi2MoO6@2D-MXene Schottky junction nanohybrid. Chem. Eng. J. 2021, 403, 126328.

[253]

Yan, D. J.; Fu, X. C.; Shang, Z. C.; Liu, J. K.; Luo, H. A. A BiVO4 film photoanode with re-annealing treatment and 2D thin Ti3C2Tx flakes decoration for enhanced photoelectrochemical water oxidation. Chem. Eng. J. 2019, 361, 853–861.

[254]

Zhang, Y. P.; Li, Y.; Ni, D. Q.; Chen, Z. W.; Wang, X.; Bu, Y. Y.; Ao, J. P. Improvement of BiVO4 photoanode performance during water photo-oxidation using Rh-doped SrTiO3 perovskite as a Co-catalyst. Adv. Funct. Mater. 2019, 29, 1902101.

[255]

Shi, W. L.; Li, M. Y.; Huang, X. L.; Ren, H. J.; Yan, C.; Guo, F. Facile synthesis of 2D/2D Co3(PO4)2/g-C3N4 heterojunction for highly photocatalytic overall water splitting under visible light. Chem. Eng. J. 2020, 382, 122960.

[256]

Wang, S. J.; Chen, L.; Zhao, X. L.; Zhang, J. Q.; Ao, Z. M.; Liu, W. R.; Wu, H.; Shi, L.; Yin, Y.; Xu, X. Y. et al. Efficient photocatalytic overall water splitting on metal-free 1D SWCNT/2D ultrathin C3N4 heterojunctions via novel non-resonant plasmonic effect. Appl. Catal. B:Environ. 2020, 278, 119312.

[257]

Chen, X. J.; Wang, J.; Chai, Y. Q.; Zhang, Z. J.; Zhu, Y. F. Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-scheme heterojunction. Adv. Mater. 2021, 33, 2007479.

[258]

Pan, J. Q.; Wang, P. H.; Wang, P. P.; Yu, Q.; Wang, J. J.; Song, C. S.; Zheng, Y. Y.; Li, C. R. The photocatalytic overall water splitting hydrogen production of g-C3N4/CdS hollow core–shell heterojunction via the HER/OER matching of Pt/MnOx. Chem. Eng. J. 2021, 405, 126622.

[259]

Yao, Y. S.; Cao, J. X.; Yin, W. J.; Yang, L. W.; Wei, X. L. A 2D ZnSe/BiOX vertical heterostructure as a promising photocatalyst for water splitting: A first-principles study. J. Phys. D:Appl. Phys. 2020, 53, 055108.

[260]

Wang, X. Y.; Yang, X.; Miao, L.; Gao, J.; Wu, L. P.; Wang, N.; Li, X. J. Decoration of Bi2Se3 nanosheets with a thin Bi2SeO2 layer for visible-light-driven overall water splitting. Int. J. Hydrogen Energy 2018, 43, 10950–10958.

[261]

Vinoth, S.; Ong, W. J.; Pandikumar, A. Sulfur-doped graphitic carbon nitride incorporated bismuth oxychloride/cobalt based type-II heterojunction as a highly stable material for photoelectrochemical water splitting. J. Colloid Interface Sci. 2021, 591, 85–95.

[262]

Vinoth, S.; Pandikumar, A. Ni integrated S-gC3N4/BiOBr based Type-II heterojunction as a durable catalyst for photoelectrochemical water splitting. Renew. Energy 2021, 173, 507–519.

[263]
NexantECA. Global Ammonia Market Snapshot [Online]. 2021.https://www.nexanteca.com/blog/202104/global-ammonia-market-snapshot (accessed Aug 17, 2021).
[264]

Chen, X. Z.; Li, N.; Kong, Z. Z.; Ong, W. J.; Zhao, X. J. Photocatalytic fixation of nitrogen to ammonia: State-of-the-art advancements and future prospects. Mater. Horiz. 2018, 5, 9–27.

[265]

Chen, X.; Li, Y. F.; Wu, Z. S.; Xu, X. L.; Zhu, W.; Gao, X. M. Bi4O5Br2 anchored on Ti3C2 MXene with ohmic heterojunction in photocatalytic NH3 production: Insights from combined experimental and theoretical calculations. J. Colloid Interface Sci. 2021, 602, 553–562.

[266]

Fang, Y.; Cao, Y.; Tan, B. H.; Chen, Q. L. Oxygen and titanium vacancies in a BiOBr/MXene-Ti3C2 composite for boosting photocatalytic N2 fixation. ACS Appl. Mater. Interfaces 2021, 13, 42624–42634.

[267]

Li, R. Y.; Zhang, L. B.; Shi, L.; Wang, P. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 2017, 11, 3752–3759.

[268]

Low, J. X.; Zhang, L. Y.; Tong, T.; Shen, B. J.; Yu, J. G. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 2018, 361, 255–266.

[269]

Chen, A. Z.; Yang, M. Q.; Wang, S.; Qian, Q. R. Recent advancements in photocatalytic valorization of plastic waste to chemicals and fuels. Front. Nanotechnol. 2021, 3, 723120.

[270]

Guo, L.; Han, X. X.; Zhang, K. L.; Zhang, Y. Y.; Zhao, Q.; Wang, D. J.; Fu, F. In-situ construction of 2D/2D ZnIn2S4/BiOCl heterostructure with enhanced photocatalytic activity for N2 fixation and phenol degradation. Catalysts 2019, 9, 729.

[271]

Cheng, H. F.; Huang, B. B.; Dai, Y. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 2014, 6, 2009–2026.

[272]

Guo, L. N.; You, Y.; Huang, H. W.; Tian, N.; Ma, T. Y.; Zhang, Y. H. Z-scheme g-C3N4/Bi2O2[BO2(OH)] heterojunction for enhanced photocatalytic CO2 reduction. J. Colloid Interface Sci. 2020, 568, 139–147.

[273]

Di, J.; Chen, C.; Zhu, C.; Song, P.; Duan, M. L.; Xiong, J.; Long, R.; Xu, M. Z.; Kang, L. X.; Guo, S. S. et al. Cobalt nitride as a novel cocatalyst to boost photocatalytic CO2 reduction. Nano Energy 2021, 79, 105429.

[274]

Zhang, M. Y.; Qi, Y.; Zhang, Z. Y. AgBr/BiOBr nano-heterostructure-decorated polyacrylonitrile nanofibers: A recyclable high-performance photocatalyst for dye degradation under visible-light irradiation. Polymers 2019, 11, 1718.

[275]

Feng, T.; Liang, J. L.; Ma, Z. Y.; Li, M.; Tong, M. P. Bactericidal activity and mechanisms of BiOBr-AgBr under both dark and visible light irradiation conditions. Colloids Surf. B:Biointerfaces 2018, 167, 275–283.

[276]

Miao, Z. R.; Wang, Q. L.; Zhang, Y. F.; Meng, L. P.; Wang, X. X. In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O. Appl. Catal. B:Environ. 2022, 301, 120802.

[277]

Chen, Q.; Long, H. M.; Chen, M. J.; Rao, Y. F.; Li, X. W.; Huang, Y. In situ construction of biocompatible Z-scheme α-Bi2O3/CuBi2O4 heterojunction for NO removal under visible light. Appl. Catal. B:Environ. 2020, 272, 119008.

[278]

Wang, X. D.; Huang, Y. H.; Liao, J. F.; Jiang, Y.; Zhou, L.; Zhang, X. Y.; Chen, H. Y.; Kuang, D. B. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 13434–13441.

[279]

Fu, F.; Shen, H. D.; Xue, W. W.; Zhen, Y. Z.; Soomro, R. A.; Yang, X. X.; Wang, D. J.; Xu, B.; Chi, R. Alkali-assisted synthesis of direct Z-scheme based Bi2O3/Bi2MoO6 photocatalyst for highly efficient photocatalytic degradation of phenol and hydrogen evolution reaction. J. Catal. 2019, 375, 399–409.

[280]

Wang, L.; Cui, D. D.; Ren, L.; Zhou, J. J.; Wang, F.; Casillas, G.; Xu, X.; Peleckis, G.; Hao, W. C.; Ye, J. H. et al. Boosting NIR-driven photocatalytic water splitting by constructing 2D/3D epitaxial heterostructures. J. Mater. Chem. A 2019, 7, 13629–13634.

[281]

Shang, J.; Chen, H. G.; Zhao, B.; Zhou, F.; Zhang, H.; Wang, X. W. Enhanced photocatalytic reduction activity of BiOCl nanosheets loaded on β-Bi2O3. J. Mater. Sci. :Mater. Electron. 2019, 30, 17956–17962.

[282]

Wang, M.; Ju, P.; Li, J. J.; Zhao, Y.; Han, X. X.; Hao, Z. M. Facile synthesis of MoS2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting. ACS Sustain. Chem. Eng. 2017, 5, 7878–7886.

[283]

Hu, L. M.; Yan, J. T.; Wang, C. L.; Chai, B.; Li, J. F. Direct electrospinning method for the construction of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts with remarkably ameliorated photocatalytic performance. Chin. J. Catal. 2019, 40, 458–469.

[284]

Chen, L. W.; Yang, S. J.; Huang, Y.; Zhang, B. G.; Kang, F. X.; Ding, D. H.; Cai, T. M. Degradation of antibiotics in multi-component systems with novel ternary AgBr/Ag3PO4@natural hematite heterojunction photocatalyst under simulated solar light. J. Hazard. Mater. 2019, 371, 566–575.

[285]

Wang, M.; Tan, G. Q.; Ren, H. J.; Xia, A.; Liu, Y. Direct double Z-scheme O-g-C3N4/Zn2SnO4N/ZnO ternary heterojunction photocatalyst with enhanced visible photocatalytic activity. Appl. Surf. Sci. 2019, 492, 690–702.

[286]

Wei, W. K.; Tian, Q. F.; Sun, H. S.; Liu, P.; Zheng, Y.; Fan, M. Z.; Zhuang, J. D. Efficient visible-light-driven photocatalytic H2 evolution over MoO2-C/CdS ternary heterojunction with unique interfacial microstructures. Appl. Catal. B:Environ. 2020, 260, 118153.

[287]

Wen Teh, Y.; Wei Goh, Y.; Kong, X. Y.; Ng, B. J.; Yong, S. T.; Chai, S. P. Fabrication of Bi2WO6/Cu/WO3 all-solid-state Z-scheme composite photocatalyst to improve CO2 photoreduction under visible light irradiation. ChemCatChem 2019, 11, 6431–6438.

[288]

Bian, J.; Qu, Y.; Zhang, X. L.; Sun, N.; Tang, D. Y.; Jing, L. Q. Dimension-matched plasmonic Au/TiO2/BiVO4 nanocomposites as efficient wide-visible-light photocatalysts to convert CO2 and mechanistic insights. J. Mater. Chem. A 2018, 6, 11838–11845.

[289]

Mensing, J. P.; Kerdcharoen, T.; Sriprachuabwong, C.; Wisitsoraat, A.; Phokharatkul, D.; Lomas, T.; Tuantranont, A. Facile preparation of graphene-metal phthalocyanine hybrid material by electrolytic exfoliation. J. Mater. Chem. 2012, 22, 17094–17099.

[290]

Bian, J.; Feng, J. N.; Zhang, Z. Q.; Sun, J. W.; Chu, M. N.; Sun, L.; Li, X.; Tang, D. Y.; Jing, L. Q. Graphene-modulated assembly of zinc phthalocyanine on BiVO4 nanosheets for efficient visible-light catalytic conversion of CO2. Chem. Commun. 2020, 56, 4926–4929.

[291]

Bian, J.; Sun, L.; Zhang, Z. Q.; Li, Z. J.; Chu, M. N.; Li, X.; Tang, D. Y.; Jing, L. Q. Au-modulated Z-scheme CuPc/BiVO4 nanosheet heterojunctions toward efficient CO2 conversion under wide-visible-light irradiation. ACS Sustain. Chem. Eng. 2021, 9, 2400–2408.

[292]

Bian, J.; Zhang, Z. Q.; Feng, J. N.; Thangamuthu, M.; Yang, F.; Sun, L.; Li, Z. J.; Qu, Y.; Tang, D. Y.; Lin, Z. W. et al. Energy platform for directed charge transfer in the cascade Z-scheme heterojunction: CO2 photoreduction without a cocatalyst. Angew. Chem., Int. Ed. 2021, 60, 20906–20914.

[293]

Jiang, H.; Xing, Z. P.; Zhao, T. Y.; Yang, Z. K.; Wang, K.; Li, Z. Z.; Yang, S. L.; Xie, L. Y.; Zhou, W. Plasmon Ag nanoparticle/Bi2S3 ultrathin nanobelt/oxygen-doped flower-like MoS2 nanosphere ternary heterojunctions for promoting charge separation and enhancing solar-driven photothermal and photocatalytic performances. Appl. Catal. B:Environ. 2020, 274, 118947.

[294]

Zhou, C. X.; Jiang, C. P.; Wang, R. L.; Chen, J. W.; Wang, G. CdS microparticles decorated with Bi0/BiOI nanosheets for visible light photocatalytic hydrogen evolution. ACS Appl. Nano Mater. 2021, 4, 4939–4947.

[295]

Zhang, N.; Liu, T. Y.; Zhao, F.; Zhang, X. C.; Wang, Y. H. The band engineering of 2D-hybridized PCN-Sb2MoO6-Bi2O3 nanomaterials with dual Z-scheme heterojunction for enhanced photocatalytic water splitting without sacrificial agents. Sustain. Energy Fuels 2021, 5, 2325–2334.

[296]

Wang, J. M.; Guo, L. L.; Xu, L.; Zeng, P.; Li, R. J.; Peng, T. Y. Z-scheme photocatalyst based on porphyrin derivative decorated few-layer BiVO4 nanosheets for efficient visible-light-driven overall water splitting. Nano Res. 2021, 14, 1294–1304.

[297]

Wang, J. M.; Xu, L.; Wang, T. X.; Li, R. J.; Zhang, Y. X.; Zhang, J.; Peng, T. Y. Porphyrin conjugated polymer grafted onto BiVO4 nanosheets for efficient Z-scheme overall water splitting via cascade charge transfer and single-atom catalytic sites. Adv. Energy Mater. 2021, 11, 2003575.

[298]

Yu, H. J.; Chen, F.; Li, X. W.; Huang, H. W.; Zhang, Q. Y.; Su, S. Q.; Wang, K. Y.; Mao, E. Y.; Mei, B.; Mul, G. et al. Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nat. Commun. 2021, 12, 4594.

[299]

Häse, F.; Roch, L. M.; Friederich, P.; Aspuru-Guzik, A. Designing and understanding light-harvesting devices with machine learning. Nat. Commun. 2020, 11, 4587.

[300]

Masood, H.; Toe, C. Y.; Teoh, W. Y.; Sethu, V.; Amal, R. Machine learning for accelerated discovery of solar photocatalysts. ACS Catal. 2019, 9, 11774–11787.

[301]

Wang, H.; Chen, S. C.; Yong, D. Y.; Zhang, X. D.; Li, S.; Shao, W.; Sun, X. S.; Pan, B. C.; Xie, Y. Giant electron–hole interactions in confined layered structures for molecular oxygen activation. J. Am. Chem. Soc. 2017, 139, 4737–4742.

[302]

Liu, H. X.; Fang, Z. X.; Su, Y. F.; Suo, Y. L.; Huang, S. P.; Zhang, Y. F.; Ding, K. N. Different atomic terminations affect the photocatalytic nitrogen fixation of bismuth oxybromide: A first principles study. Chem. -Asian J. 2018, 13, 799–808.

[303]

Albero, J.; Peng, Y.; García, H. Photocatalytic CO2 reduction to C2+ products. ACS Catal. 2020, 10, 5734–5749.

[304]

Yuan, J.; Huang, X. Y.; Zhang, L. L.; Gao, F.; Lei, R.; Jiang, C. K.; Feng, W. H.; Liu, P. Tuning piezoelectric field for optimizing the coupling effect of piezo-photocatalysis. Appl. Catal. B:Environ. 2020, 278, 119291.

[305]

Feng, Y. W.; Li, H.; Ling, L. L.; Yan, S.; Pan, D. L.; Ge, H.; Li, H. X.; Bian, Z. F. Enhanced photocatalytic degradation performance by fluid-induced piezoelectric field. Environ. Sci. Technol. 2018, 52, 7842–7848.

[306]

Li, M.; Sun, J. X.; Chen, G.; Yao, S. Y.; Cong, B. W.; Liu, P. F. Construction photothermal/pyroelectric property of hollow FeS2/Bi2S3 nanostructure with enhanced full spectrum photocatalytic activity. Appl. Catal. B:Environ. 2021, 298, 120573.

Publication history
Copyright
Acknowledgements

Publication history

Received: 01 November 2021
Revised: 01 December 2021
Accepted: 05 December 2021
Published: 21 February 2022
Issue date: April 2023

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors would like to acknowledge the financial support provided by the Ministry of Higher Education (MOHE) Malaysia under the Fundamental Research Grant Scheme (FRGS) (No. FRGS/1/2020/TK0/XMU/02/1). The authors would also like to thank the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515111019) for the financial support. This work is also funded by Xiamen University Malaysia Investigatorship Grant (No. IENG/0038), Xiamen University Malaysia Research Fund (Nos. XMUMRF/2021-C8/IENG/0041 and XMUMRF/2019-C3/IENG/0013) and Hengyuan International Sdn. Bhd. (No. EENG/0003).

Return