Journal Home > Volume 16 , Issue 4

As state-of-the-art electrochemical energy conversion and storage (EECS) techniques, fuel cells and rechargeable batteries have achieved great success in the past decades. However, modern societies’ ever-growing demand in energy calls for EECS devices with high efficiency and enhanced performance, which mainly rely on the rational design of catalysts, electrode materials, and electrode/electrolyte interfaces in EESC, based on in-deep and comprehensive mechanistic understanding of the relevant electrochemical redox reactions. Such an understanding can be realized by monitoring the dynamic redox reaction processes under realistic operation conditions using in situ techniques, such as in situ Raman, Fourier transform infrared (FTIR), and X-ray diffraction (XRD) spectroscopy. These techniques can provide characteristic spectroscopic information of molecules and/or crystals, which are sensitive to structure/phase changes resulted from different electrochemical working conditions, hence allowing for intermediates identification and mechanisms understanding. This review described and summarized recent progress in the in situ studies of fuel cells and rechargeable batteries via Raman, FTIR, and XRD spectroscopy. The applications of these in situ techniques on typical electrocatalytic electrooxidation reaction and oxygen reduction reaction (ORR) in fuel cells, on representative high capacity and/or resource abundance cathodes and anodes, and on the solid electrolyte interface (SEI) in rechargeable batteries are discussed. We discuss how these techniques promote the development of novel EECS systems and highlight their critical importance in future EECS research.


menu
Abstract
Full text
Outline
About this article

In situ Raman, FTIR, and XRD spectroscopic studies in fuel cells and rechargeable batteries

Show Author's information Fan Gao1,§Xiang-Dong Tian1,§Jia-Sheng Lin1Jin-Chao Dong1Xiu-Mei Lin2( )Jian-Feng Li1( )
Xiamen Cardiovascular Hospital, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
Department of Chemistry and Environment Science, Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou 363000, China

§ Fan Gao and Xiang-Dong Tian contributed equally to this work.

Abstract

As state-of-the-art electrochemical energy conversion and storage (EECS) techniques, fuel cells and rechargeable batteries have achieved great success in the past decades. However, modern societies’ ever-growing demand in energy calls for EECS devices with high efficiency and enhanced performance, which mainly rely on the rational design of catalysts, electrode materials, and electrode/electrolyte interfaces in EESC, based on in-deep and comprehensive mechanistic understanding of the relevant electrochemical redox reactions. Such an understanding can be realized by monitoring the dynamic redox reaction processes under realistic operation conditions using in situ techniques, such as in situ Raman, Fourier transform infrared (FTIR), and X-ray diffraction (XRD) spectroscopy. These techniques can provide characteristic spectroscopic information of molecules and/or crystals, which are sensitive to structure/phase changes resulted from different electrochemical working conditions, hence allowing for intermediates identification and mechanisms understanding. This review described and summarized recent progress in the in situ studies of fuel cells and rechargeable batteries via Raman, FTIR, and XRD spectroscopy. The applications of these in situ techniques on typical electrocatalytic electrooxidation reaction and oxygen reduction reaction (ORR) in fuel cells, on representative high capacity and/or resource abundance cathodes and anodes, and on the solid electrolyte interface (SEI) in rechargeable batteries are discussed. We discuss how these techniques promote the development of novel EECS systems and highlight their critical importance in future EECS research.

Keywords: Fourier transform infrared spectroscopy (FTIR), fuel cells, X-ray diffraction (XRD), rechargeable batteries, Raman, in situ spectroscopy

References(95)

[1]

Wang, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 2011, 88, 981–1007.

[2]

Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2016, 16, 57–69.

[3]

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

[4]

Das, V.; Padmanaban, S.; Venkitusamy, K.; Selvamuthukumaran, R.; Blaabjerg, F.; Siano, P. Recent advances and challenges of fuel cell based power system architectures and control—A review. Renew. Sustain. Energy Rev. 2017, 73, 10–18.

[5]

Akhairi, M. A. F.; Kamarudin, S. K. Catalysts in direct ethanol fuel cell (DEFC): An overview. Int. J. Hydrogen Energy 2016, 41, 4214–4228.

[6]

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

[7]

Whittingham, M. S. Lithium batteries: 50 years of advances to address the next 20 years of climate issues. Nano Lett. 2020, 20, 8435–8437.

[8]

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

[9]

Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

[10]

Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013.

[11]

Shadike, Z.; Zhao, E. Y.; Zhou, Y. N.; Yu, X. Q.; Yang, Y.; Hu, E. Y.; Bak, S.; Gu, L.; Yang, X. Q. Advanced characterization techniques for sodium-ion battery studies. Adv. Energy Mater. 2018, 8, 1702588.

[12]

Liu, D. Q.; Shadike, Z.; Lin, R. Q.; Qian, K.; Li, H.; Li, K. K.; Wang, S. W.; Yu, Q. P.; Liu, M.; Ganapathy, S. et al. Review of recent development of in situ/operando characterization techniques for lithium battery research. Adv. Mater. 2019, 31, 1806620.

[13]

Amalraj, S. F.; Aurbach, D. The use of in situ techniques in R&D of Li and Mg rechargeable batteries. J. Solid State Electrochem. 2011, 15, 877–890.

[14]

Lu, J.; Wu, T. P.; Amine, K. State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat. Energy 2017, 2, 17011.

[15]

Grey, C. P.; Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2017, 16, 45–56.

[16]

Jones, R. R.; Hooper, D. C.; Zhang, L. W.; Wolverson, D.; Valev, V. K. Raman techniques: Fundamentals and frontiers. Nanoscale Res. Lett. 2019, 14, 231.

[17]

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

[18]

Zhang, X.; Tan, Q. H.; Wu, J. B.; Shi, W.; Tan, P. H. Review on the Raman spectroscopy of different types of layered materials. Nanoscale 2016, 8, 6435–6450.

[19]

Deng, Y. F.; Dong, S. Y.; Li, Z. F.; Jiang, H.; Zhang, X. G.; Ji, X. L. Applications of conventional vibrational spectroscopic methods for batteries beyond Li-ion. Small Methods 2018, 2, 1700332.

[20]

Li, J. T.; Zhou, Z. Y.; Broadwell, I.; Sun, S. G. In-situ infrared spectroscopic studies of electrochemical energy conversion and storage. Acc. Chem. Res. 2012, 45, 485–494.

[21]

Tian, Z. Q.; Ren, B.; Wu, D. Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 2002, 106, 9463–9483.

[22]

Zrimsek, A. B.; Chiang, N.; Mattei, M.; Zaleski, S.; McAnally, M. O.; Chapman, C. T.; Henry, A. I.; Schatz, G. C.; Van Duyne, R. P. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 7583–7613.

[23]

Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.

[24]

Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q. Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 5002–5069.

[25]

Zhang, H.; Duan, S.; Radjenovic, P. M.; Tian, Z. Q.; Li, J. F. Core–shell nanostructure-enhanced Raman spectroscopy for surface catalysis. Acc. Chem. Res. 2020, 53, 729–739.

[26]

Lin, X. M.; Wu, D. Y.; Gao, P.; Chen, Z.; Ruben, M.; Fichtner, M. Monitoring the electrochemical energy storage processes of an organic full rechargeable battery via operando Raman spectroscopy: A mechanistic study. Chem. Mater. 2019, 31, 3239–3247.

[27]

Wen, B. Y.; Chen, Q. Q.; Radjenovic, P. M.; Dong, J. C.; Tian, Z. Q.; Li, J. F. In situ surface-enhanced Raman spectroscopy characterization of electrocatalysis with different nanostructures. Annu. Rev. Phys. Chem. 2021, 72, 331–351.

[28]

Xia, M. T.; Liu, T. T.; Peng, N.; Zheng, R. T.; Cheng, X.; Zhu, H. J.; Yu, H. X.; Shui, M.; Shu, J. Lab-scale in situ X-ray diffraction technique for different battery systems: Designs, applications, and perspectives. Small Methods 2019, 3, 1900119.

[29]

Lv, H. F.; Li, D. G.; Strmcnik, D.; Paulikas, A. P.; Markovic, N. M.; Stamenkovic, V. R. Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. Nano Energy 2016, 29, 149–165.

[30]

Chen, Z. W.; Waje, M.; Li, W. Z.; Yan, Y. S. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. , Int. Ed. 2007, 46, 4060–4063.

[31]

Guo, S. J.; Li, D. G.; Zhu, H. Y.; Zhang, S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. H. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem. , Int. Ed. 2013, 52, 3465–3468.

[32]

Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

[33]

Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. V. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.

[34]

Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S. H. Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 2007, 129, 6974–6975.

[35]

Chen, S.; Bi, J. Y.; Zhao, Y.; Yang, L. J.; Zhang, C.; Ma, Y. W.; Wu, Q.; Wang, X. Z.; Hu, Z. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 24, 5593–5597.

[36]

Wu, G. P.; Wang, J.; Ding, W.; Nie, Y.; Li, L.; Qi, X. Q.; Chen, S. G.; Wei, Z. D. A strategy to promote the electrocatalytic activity of spinels for oxygen reduction by structure reversal. Angew. Chem. , Int. Ed. 2016, 55, 1340–1344.

[37]

Liu, X. E.; Dai, L. M. Carbon-based metal-free catalysts. Nat. Rev. Mater. 2016, 1, 16064.

[38]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[39]

Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 2019, 4, 60–67.

[40]

Dong, J. C.; Su, M.; Briega-Martos, V.; Li, L.; Le, J. B.; Radjenovic, P.; Zhou, X. S.; Feliu, J. M.; Tian, Z. Q.; Li, J. F. Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces. J. Am. Chem. Soc. 2020, 142, 715–719.

[41]

Ze, H. J.; Chen, X.; Wang, X. T.; Wang, Y. H.; Chen, Q. Q.; Lin, J. S.; Zhang, Y. J.; Zhang, X. G.; Tian, Z. Q.; Li, J. F. Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy. J. Am. Chem. Soc. 2021, 143, 1318–1322.

[42]

Wang, Y. H.; Le, J. B.; Li, W. Q.; Wei, J.; Radjenovic, P. M.; Zhang, H.; Zhou, X. S.; Cheng, J.; Tian, Z. Q.; Li, J. F. In situ spectroscopic insight into the origin of the enhanced performance of bimetallic nanocatalysts towards the oxygen reduction reaction (ORR). Angew. Chem. , Int. Ed. 2019, 58, 16062–16066.

[43]

Lu, B. A.; Shen, L. F.; Liu, J.; Zhang, Q. H.; Wan, L. Y.; Morris, D. J.; Wang, R. X.; Zhou, Z. Y.; Li, G.; Sheng, T. et al. Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction. ACS Catal. 2021, 11, 355–363.

[44]

Davydova, E. S.; Mukerjee, S.; Jaouen, F.; Dekel, D. R. Electrocatalysts for hydrogen oxidation reaction in alkaline electrolytes. ACS Catal. 2018, 8, 6665–6690.

[45]

Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. Direct formic acid fuel cells. J. Power Sources 2002, 111, 83–89.

[46]

Jiang, J. H.; Wieckowski, A. Prospective direct formate fuel cell. Electrochem. Commun. 2012, 18, 41–43.

[47]
Liu, H. S.; Zhang, J. J. Electrocatalysis of Direct Methanol Fuel Cells: From Fundamentals to Applications; Wiley-VCH: Weinheim, 2009.
[48]
Barbaro, P.; Bianchini, C. Catalysis for Sustainable Energy Production; Wiley-VCH: Weinheim, 2009.
[49]

Wang, Y. H.; Wang, X. T.; Ze, H. J.; Zhang, X. G.; Radjenovic, P. M.; Zhang, Y. J.; Dong, J. C.; Tian, Z. Q.; Li, J. F. Spectroscopic verification of adsorbed hydroxy intermediates in the bifunctional mechanism of the hydrogen oxidation reaction. Angew. Chem. , Int. Ed. 2021, 60, 5708–5711.

[50]

Valdés-López, V. F.; Mason, T.; Shearing, P. R.; Brett, D. J. L. Carbon monoxide poisoning and mitigation strategies for polymer electrolyte membrane fuel cells—A review. Prog. Energy Combust. Sci. 2020, 79, 100842.

[51]

Stewart, D. W. G.; Scott, K.; Wain, A. J.; Rosser, T. E.; Brightman, E.; Macphee, D.; Mamlouk, M. The role of tungsten oxide in enhancing the carbon monoxide tolerance of platinum-based hydrogen oxidation catalysts. ACS Appl. Mater. Interfaces 2020, 12, 37079–37091.

[52]

Rettenmaier, C.; Arán-Ais, R. M.; Timoshenko, J.; Rizo, R.; Jeon, H. S.; Kühl, S.; Chee, S. W.; Bergmann, A.; Cuenya, B. R. Enhanced formic acid oxidation over SnO2-decorated Pd nanocubes. ACS Catal. 2020, 10, 14540–14551.

[53]

Wang, C. Y.; Yu, Z. Y.; Li, G.; Song, Q. T.; Li, G.; Luo, C. X.; Yin, S. H.; Lu, B. A.; Xiao, C.; Xu, B. B. et al. Intermetallic PtBi nanoplates with high catalytic activity towards electro-oxidation of formic acid and glycerol. ChemElectroChem 2020, 7, 239–245.

[54]

Li, M. G.; Zhao, Z. L.; Zhang, W. Y.; Luo, M. C.; Tao, L.; Sun, Y. J.; Xia, Z. H.; Chao, Y. G.; Yin, K.; Zhang, Q. H. et al. Sub-monolayer YOx/MoOx on ultrathin Pt nanowires boosts alcohol oxidation electrocatalysis. Adv. Mater. 2021, 33, 2103762.

[55]

Sun, S. G.; Clavilier, J.; Bewick. A. The mechanism of electrocatalytic oxidation of formic acid on Pt(100) and Pt(111) in sulphuric acid solution: An emirs study. J. Electroanal. Chem. Interfacial Electrochem. 1988, 240, 147–159.

[56]

Sun, S. G.; Lin, Y. In situ FTIR spectroscopic investigations of reaction mechanism of isopropanol oxidation on platinum single crystal electrodes. Electrochim. Acta 1996, 41, 693–700.

[57]

Wang, Y.; Zhuo, H. Y.; Sun, H.; Zhang, X.; Dai, X. P.; Luan, C. L.; Qin, C. L.; Zhao, H. H.; Li, J.; Wang, M. L. et al. Implanting Mo atoms into surface lattice of Pt3Mn alloys enclosed by high-indexed facets: Promoting highly active sites for ethylene glycol oxidation. ACS Catal. 2019, 9, 442–455.

[58]

Guo, J. C.; Huang, R.; Li, Y.; Yu, Z. Y.; Wan, L. Y.; Huang, L.; Xu, B. B.; Ye, J. Y.; Sun, S. G. Surface structure effects of high-index faceted Pd nanocrystals decorated by Au submonolayer in enhancing the catalytic activity for ethanol oxidation reaction. J. Phys. Chem. C 2019, 123, 23554–23562.

[59]

Guo, J. Z.; Wang, P. F.; Wu, X. L.; Zhang, X. H.; Yan, Q. Y.; Chen, H.; Zhang, J. P.; Guo, Y. G. High-energy/power and low-temperature cathode for sodium-ion batteries: In situ XRD study and superior full-cell performance. Adv. Mater. 2017, 29, 1701968.

[60]

Harks, P. P. R. M. L.; Mulder, F. M.; Notten, P. H. L. In situ methods for Li-ion battery research: A review of recent developments. J. Power Sources 2015, 288, 92–105.

[61]

Bak, S. M.; Shadike, Z.; Lin, R.; Yu, X.; Yang, X. Q. In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research. NPG Asia Mater. 2018, 10, 563–580.

[62]

Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M. L.; Foix, D.; Gonbeau, D.; Walker, W. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 2013, 12, 827–835.

[63]

Sathiya, M.; Abakumov, A. M.; Foix, D.; Rousse, G.; Ramesha, K.; Saubanère, M.; Doublet, M. L.; Vezin, H.; Laisa, C. P.; Prakash, A. S. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 2015, 14, 230–238.

[64]

Li, X.; Qiao, Y.; Guo, S. H.; Jiang, K. Z.; Ishida, M.; Zhou, H. S. A new type of Li-rich rock-salt oxide Li2Ni1/3Ru2/3O3 with reversible anionic redox chemistry. Adv. Mater. 2019, 31, 1807825.

[65]

Li, X.; Qiao, Y.; Guo, S. H.; Xu, Z. M.; Zhu, H.; Zhang, X. Y.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H. S. Direct visualization of the reversible O2−/O redox process in Li-rich cathode materials. Adv. Mater. 2018, 30, 1705197.

[66]

Zhang, X. Y.; Qiao, Y.; Guo, S. H.; Jiang, K. Z.; Xu, S.; Xu, H.; Wang, P.; He, P.; Zhou, H. S. Manganese-based Na-rich materials boost anionic redox in high-performance layered cathodes for sodium-ion batteries. Adv. Mater. 2019, 31, 1807770.

[67]

Qiao, Y.; Guo, S. H.; Zhu, K.; Liu, P.; Li, X.; Jiang, K. Z.; Sun, C. J.; Chen, M. W.; Zhou, H. S. Reversible anionic redox activity in Na3RuO4 cathodes: A prototype Na-rich layered oxide. Energy Environ. Sci. 2018, 11, 299–305.

[68]

Zhong, X. B.; He, C.; Gao, F.; Tian, Z. Q.; Li, J. F. In situ Raman spectroscopy reveals the mechanism of titanium substitution in P2-Na2/3Ni1/3Mn2/3O2: Cathode materials for sodium batteries. J. Energy Chem. 2021, 53, 323–328.

[69]

Huang, J. X.; Li, B.; Liu, B.; Liu, B. J.; Zhao, J. B.; Ren, B. Structural evolution of NM (Ni and Mn) lithium-rich layered material revealed by in-situ electrochemical Raman spectroscopic study. J. Power Sources 2016, 310, 85–90.

[70]

Waluś, S.; Barchasz, C.; Bouchet, R.; Leprêtre, J. C.; Colin, J. F.; Martin, J. F.; Elkaïm, E.; Baehtz, C.; Alloin, F. Lithium/sulfur batteries upon cycling: Structural modifications and species quantification by in situ and operando X-ray diffraction spectroscopy. Adv. Energy Mater. 2015, 5, 1500165.

[71]

Schneider, A.; Weidmann, C.; Suchomski, C.; Sommer, H.; Janek, J.; Brezesinski, T. Ionic liquid-derived nitrogen-enriched carbon/sulfur composite cathodes with hierarchical microstructure—A step toward durable high-energy and high-performance lithium-sulfur batteries. Chem. Mater. 2015, 27, 1674–1683.

[72]

Demir-Cakan, R.; Morcrette, M.; Gangulibabu; Guéguen, A.; Dedryvère, R.; Tarascon, J. M. Li-S batteries: Simple approaches for superior performance. Energy Environ. Sci. 2013, 6, 176–182.

[73]

Conder, J.; Bouchet, R.; Trabesinger, S.; Marino, C.; Gubler, L.; Villevieille, C. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction. Nat. Energy 2017, 2, 17069.

[74]

Chen, J. J.; Yuan, R. M.; Feng, J. M.; Zhang, Q.; Huang, J. X.; Fu, G.; Zheng, M. S.; Ren, B.; Dong, Q. F. Conductive Lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery. Chem. Mater. 2015, 27, 2048–2055.

[75]

Wu, H. L.; Huff, L. A.; Gewirth, A. A. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2015, 7, 1709–1719.

[76]

Vinayan, B. P.; Diemant, T.; Lin, X. M.; Cambaz, M. A.; Golla-Schindler, U.; Kaiser, U.; Behm, R. J.; Fichtner, M. Nitrogen rich hierarchically organized porous carbon/sulfur composite cathode electrode for high performance Li/S battery: A mechanistic investigation by operando spectroscopic studies. Adv. Mater. Interfaces 2016, 3, 1600372.

[77]

Lu, Y.; Hou, X.; Miao, L.; Li, L.; Shi, R.; Liu, L.; Chen, J. Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries. Angew. Chem. , Int. Ed. 2019, 58, 7020–7024.

[78]

Lee, M.; Hong, J.; Lopez, J.; Sun, Y. M.; Feng, D. W.; Lim, K.; Chueh, W. C.; Toney, M. F.; Cui, Y.; Bao, Z. A. High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2017, 2, 861–868.

[79]

Sole, C.; Drewett, N. E.; Hardwick, L. J. In situ Raman study of lithium-ion intercalation into microcrystalline graphite. Faraday Discuss. 2014, 172, 223–237.

[80]

Cohn, A. P.; Share, K.; Carter, R.; Oakes, L.; Pint, C. L. Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene. Nano Lett. 2016, 16, 543–548.

[81]

Lin, X. M.; Diemant, T.; Mu, X. K.; Gao, P.; Behm, R. J.; Fichtner, M. Spectroscopic investigations on the origin of the improved performance of composites of nanoparticles/graphene sheets as anodes for lithium ion batteries. Carbon 2018, 127, 47–56.

[82]

Qiao, Y.; Jiang, K. Z.; Deng, H.; Zhou, H. A high-energy-density and long-life lithium-ion battery via reversible oxide-peroxide conversion. Nat. Catal. 2019, 2, 1035–1044.

[83]

Lin, X. M.; Chen, J. H.; Fan, J. J.; Ma, Y.; Radjenovic, P.; Xu, Q. C.; Huang, L.; Passerini, S.; Tian, Z. Q.; Li, J. F. Synthesis and operando sodiation mechanistic study of nitrogen-doped porous carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode. Adv. Energy Mater. 2019, 9, 1902312.

[84]

Ma, Y.; Ma, Y. J.; Bresser, D.; Ji, Y. C.; Geiger, D.; Kaiser, U.; Streb, C.; Varzi, A.; Passerini, S. Cobalt disulfide nanoparticles embedded in porous carbonaceous micro-polyhedrons interlinked by carbon nanotubes for superior lithium and sodium storage. ACS Nano 2018, 12, 7220–7231.

[85]

Ma, Y. J.; Ma, Y.; Giuli, G.; Euchner, H.; Groß, A.; Lepore, G. O.; D'Acapito, F.; Geiger, D.; Biskupek, J.; Kaiser, U. et al. Introducing highly redox-active atomic centers into insertion-type electrodes for lithium-ion batteries. Adv. Energy Mater. 2020, 10, 2000783.

[86]

Zhong, X. B.; Wang, X. X.; Wang, H. Y.; Yang, Z. Z.; Jiang, Y. X.; Li, J. F.; Tian, Z. Q. Ultrahigh-performance mesoporous ZnMn2O4 microspheres as anode materials for lithium-ion batteries and their in situ Raman investigation. Nano Res. 2018, 11, 3814–3823.

[87]

An, Q. Y.; Lv, F.; Liu, Q. Q.; Han, C. H.; Zhao, K. N.; Sheng, J. Z.; Wei, Q. L.; Yan, M. Y.; Mai, L. Q. Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett. 2014, 14, 6250–6256.

[88]

Yao, K. P. C.; Okasinski, J. S.; Kalaga, K.; Almer, J. D.; Abraham, D. P. Operando quantification of (de)lithiation behavior of silicon-graphite blended electrodes for lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1803380.

[89]

Misra, S.; Liu, N.; Nelson, J.; Hong, S. S.; Cui, Y.; Toney, M. F. In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. ACS Nano 2012, 6, 5465–5473.

[90]

Lim, L. Y.; Fan, S. F.; Hng, H. H.; Toney, M. F. Storage capacity and cycling stability in Ge anodes: Relationship of anode structure and cycling rate. Adv. Energy Mater. 2015, 5, 1500599.

[91]

Gao, H.; Niu, J. Z.; Zhang, C.; Peng, Z. Q.; Zhang, Z. H. A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries. ACS Nano 2018, 12, 3568–3577.

[92]

Qiao, Y.; Yang, H. J.; Chang, Z.; Deng, H.; Li, X.; Zhou, H. S. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 2021, 6, 653–662.

[93]

Cabo-Fernandez, L.; Mueller, F.; Passerini, S.; Hardwick, L. J. In situ Raman spectroscopy of carbon-coated ZnFe2O4 anode material in Li-ion batteries—Investigation of SEI growth. Chem. Commun. 2016, 52, 3970–3973.

[94]

Maruyama, S.; Fukutsuka, T.; Miyazaki, K.; Abe, T. In situ Raman spectroscopic analysis of solvent co-intercalation behavior into a solid electrolyte interphase-covered graphite electrode. J. Appl. Electrochem. 2019, 49, 639–646.

[95]

Zhou, Y. D.; Doerrer, C.; Kasemchainan, J.; Bruce, P. G.; Pasta, M.; Hardwick, L. J. Observation of interfacial degradation of Li6PS5Cl against lithium metal and LiCoO2 via in situ electrochemical Raman microscopy. Batteries Supercaps 2020, 3, 647–652.

Publication history
Copyright
Acknowledgements

Publication history

Received: 05 October 2021
Revised: 27 November 2021
Accepted: 05 December 2021
Published: 17 January 2022
Issue date: April 2023

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2020YFB1505800 and 2019YFA0705400), the National Natural Science Foundation of China (NSFC) (Nos. 201925404, 21902137, 22005130, and 22021001), the Fundamental Research Funds for the Central Universities (Nos. 20720210069 and 20720210043), and the Science and Technology Planning Project of Fujian Province (No. 2019Y4001).

Return