Journal Home > Volume 15 , Issue 5

A novel porous and crystalline two-dimensional (2D) electrochemically active covalent organic framework (COF) based on ortho-quinone units has been prepared as an innovative approach towards the development of organic cathode materials with multiple redox sites as an efficient electrocatalyst for the oxygen reduction reaction (ORR). In contrast with most of the previously reported COFs as electrocatalysts for the ORR, the electrocatalytic application of this material towards ORR has been investigated without adding any metal or conductive supporting material and avoiding any additional carbonization step. Additionally, the electrochemical properties of the COF material have been compared with two analogue amorphous frameworks with similar chemical composition, which points out the important role of the enhanced crystallinity and porosity of the COF network in its superior performance as an electrocatalyst towards ORR.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Pyrenetetraone-based covalent organic framework as an effective electrocatalyst for oxygen reduction reaction

Show Author's information Paloma García-Arroyo1Emiliano Martínez-Periñán2Jorge J. Cabrera-Trujillo1Elena Salagre3Enrique G. Michel3,4José I. Martínez5Encarnación Lorenzo2,6,7( )José L. Segura1( )
Departamento de Química Orgánica I, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
Departamento de Nanoestructuras, Superficies, Recubrimientos y Astrofísica Molecular, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049 Madrid, Spain
Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), 28049 Madrid, Spain
Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract

A novel porous and crystalline two-dimensional (2D) electrochemically active covalent organic framework (COF) based on ortho-quinone units has been prepared as an innovative approach towards the development of organic cathode materials with multiple redox sites as an efficient electrocatalyst for the oxygen reduction reaction (ORR). In contrast with most of the previously reported COFs as electrocatalysts for the ORR, the electrocatalytic application of this material towards ORR has been investigated without adding any metal or conductive supporting material and avoiding any additional carbonization step. Additionally, the electrochemical properties of the COF material have been compared with two analogue amorphous frameworks with similar chemical composition, which points out the important role of the enhanced crystallinity and porosity of the COF network in its superior performance as an electrocatalyst towards ORR.

Keywords: oxygen reduction reaction, electrocatalysis, covalent organic framework, metal free, pyrenetetraone

References(43)

1

Serrano, E.; Rus, G.; García-Martínez, J. Nanotechnology for sustainable energy. Renew. Sustain. Energy Rev. 2009, 13, 2373–2384.

2

Capellán-Pérez, I.; Mediavilla, M.; De Castro, C.; Carpintero, Ó.; Miguel, L. J. Fossil fuel depletion and socio-economic scenarios: An integrated approach. Energy 2014, 77, 641–666.

3

Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.

4

Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

5

Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y. E.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem 2019, 5, 1486–1511.

6

Sealy, C. The problem with platinum. Mater. Today 2008, 11, 65–68.

7

Lohse, M. S.; Bein, T. Covalent organic frameworks: Structures, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1705553.

8

Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.

9

Song, Y. P.; Sun, Q.; Aguila, B.; Ma, S. Q. Opportunities of covalent organic frameworks for advanced applications. Adv. Sci. 2019, 6, 1801410.

10

Cui, X.; Lei, S.; Wang, A. C.; Gao, L. K.; Zhang, Q.; Yang, Y. K.; Lin, Z. Q. Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy 2020, 70, 104525.

11

Xiang, Z. H.; Xue, Y. H.; Cao, D. P.; Huang, L. Chen, J. F.; Dai, L. M. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem., Int. Ed. 2014, 53, 2433–2437.

12

Zhang, H.; Zhu, M. S.; Schmidt, O. G.; Chen, S. L.; Zhang, K. Covalent organic frameworks for efficient energy electrocatalysis: Rational design and progress. Adv. Energy Sustain. Res. 2021, 2, 2000090.

13

Lin, C. Y.; Zhang, D. T.; Zhao, Z. H.; Xia, Z. H. Covalent organic framework electrocatalysts for clean energy conversion. Adv. Mater. 2018, 30, 1703646.

14

Liu, H.; Yi, S. J.; Wu, Y. F.; Wu, H.; Zhou, J. R.; Liang, W. J.; Cai, J. F.; Xu, H. An efficient Co-N/C electrocatalyst for oxygen reduction facilely prepared by tuning cobalt species content. Int. J. Hydrogen Energy 2020, 45, 16105–16113.

15

Hosokawa, T.; Tsuji, M.; Tsuchida, K.; Iwase, K.; Harada, T.; Nakanishi, S.; Kamiya, K. Metal-doped bipyridine linked covalent organic framework films as a platform for photoelectrocatalysts. J. Mater. Chem. A 2021, 9, 11073–11080.

16

Yue, J. Y.; Wang, Y. T.; Wu, X.; Yang, P.; Ma, Y.; Liu, X. H.; Tang, B. Two-dimensional porphyrin covalent organic frameworks with tunable catalytic active sites for the oxygen reduction reaction. Chem. Commun. 2021, 57, 12619–12622.

17

Ma, W. J.; Yu, P.; Ohsaka, T.; Mao, L. Q. An efficient electrocatalyst for oxygen reduction reaction derived from a Co-porphyrin-based covalent organic framework. Electrochem. Commun. 2015, 52, 53–57.

18

Wei, S. J.; Wang, Y.; Chen, W. X.; Li, Z.; Cheong, W. C.; Zhang, Q. H.; Gong, Y.; Gu, L.; Chen, C.; Wang, D. S. et al. Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chem. Sci. 2020, 11, 786–790.

19

Xu, Q.; Qian, J.; Luo, D.; Liu, G. J.; Guo, Y.; Zeng, G. F. Ni/Fe clusters and nanoparticles confined by covalent organic framework derived carbon as highly active catalysts toward oxygen reduction reaction and oxygen evolution reaction. Adv. Sustain. Syst. 2020, 4, 2000115.

20

Xu, Q.; Tang, Y. P.; Zhang, X. B.; Oshima, Y.; Chen, Q. H.; Jiang, D. L. Template conversion of covalent organic frameworks into 2D conducting nanocarbons for catalyzing oxygen reduction reaction. Adv. Mater. 2018, 30, 1706330.

21

Yang, C.; Tao, S. S.; Huang, N.; Zhang, X. B.; Duan, J. G.; Makiura, R.; Maenosono, S. Heteroatom-doped carbon electrocatalysts derived from nanoporous two-dimensional covalent organic frameworks for oxygen reduction and hydrogen evolution. ACS Appl. Nano Mater. 2020, 3, 5481–5488.

22

Yang, C.; Maenosono, S.; Duan, J. G.; Zhang, X. B. COF-derived N, P Co-doped carbon as a metal-free catalyst for highly efficient oxygen reduction reaction. ChemNanoMat 2019, 5, 957–963.

23

Jiang, T.; Jiang, W. C.; Li, Y. L.; Xu, Y. S.; Zhao, M. Y.; Deng, M. Y.; Wang, Y. Facile regulation of porous N-doped carbon-based catalysts from covalent organic frameworks nanospheres for highly-efficient oxygen reduction reaction. Carbon 2021, 180, 92–100.

24

Guo, Y.; Yang, S.; Xu, Q.; Wu, P.; Jiang, Z.; Zeng, G. F. Hierarchical confinement of PtZn alloy nanoparticles and single-dispersed Zn atoms on COF@MOF-derived carbon towards efficient oxygen reduction reaction. J. Mater. Chem. A 2021, 9, 13625–13630.

25

Kamiya, K.; Kamai, R.; Hashimoto, K.; Nakanishi, S. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts. Nat. Commun. 2014, 5, 5040.

26

Guo, J. N.; Lin, C. Y.; Xia, Z. H.; Xiang, Z. H. A pyrolysis-free covalent organic polymer for oxygen reduction. Angew. Chem., Int. Ed. 2018, 57, 12567–12572.

27

Cui, X.; Gao, L. K.; Ma, R.; Wei, Z. N.; Lu, C. H.; Li, Z. L.; Yang, Y. K. Pyrolysis-free covalent organic framework-based materials for efficient oxygen electrocatalysis. J. Mater. Chem. A 2021, 9, 20985–21004.

28

Banerjee, S.; Anayah, R. I.; Gerke, C. S.; Thoi, V. S. From molecules to porous materials: Integrating discrete electrocatalytic active sites into extended frameworks. ACS Cent. Sci. 2020, 6, 1671–1684.

29

Wielend, D.; Vera-Hidalgo, M.; Seelajaroen, H.; Sariciftci, N. S.; Pérez, E. M.; Whang, D. R. Mechanically interlocked carbon nanotubes as a stable electrocatalytic platform for oxygen reduction. ACS Appl. Mater. Interfaces 2020, 12, 32615–32621.

30

Ajjan, F. N.; Jafari, M. J.; Rębiś, T.; Ederth, T.; Inganäs, O. Spectroelectrochemical investigation of redox states in a polypyrrole/lignin composite electrode material. J. Mater. Chem. A 2015, 3, 12927–12937.

31

Tammeveski, K.; Kontturi, K.; Nichols, R. J.; Potter, R. J.; Schiffrin, D. J. Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes. J. Electroanal. Chem. 2001, 515, 101–112.

32

Sarapuu, A.; Vaik, K.; Schiffrin, D. J.; Tammeveski, K. Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. J. Electroanal. Chem. 2003, 541, 23–29.

33

Zhang, J. Y.; Zhang, G.; Jin, S. Y.; Zhou, Y. J.; Ji, Q. H.; Lan, H. C.; Liu, H. J.; Qu, J. H. Graphitic N in nitrogen-doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction. Carbon 2020, 163, 154–161.

34

Chi, X. W.; Hao, F.; Zhang, J. B.; Wu, X. W.; Zhang, Y.; Gheytani, S.; Wen, Z. Y.; Yao, Y. A high-energy quinone-based all-solid-state sodium metal battery. Nano Energy 2019, 62, 718–724.

35

Li, Q.; Li, D. N.; Wang, H. D.; Wang, H. G.; Li, Y. H.; Si, Z. J.; Duan, Q. Conjugated carbonyl polymer-based flexible cathode for superior lithium-organic batteries. ACS Appl. Mater. Interfaces 2019, 11, 28801–28808.

36

Yao, C. J.; Wu, Z. Z.; Xie, J.; Yu, F.; Guo, W.; Xu, Z. J.; Li, D. S.; Zhang, S. Q.; Zhang, Q. C. Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. ChemSusChem 2020, 13, 2457–2463.

37

García-Arroyo, P.; Navalpotro, P.; Mancheño, M. J.; Salagre, E.; Cabrera-Trujillo, J. J.; Michel, E. G.; Segura, J. L. Carretero-González, J. Acidic triggering of reversible electrochemical activity in a pyrenetetraone-based 2D polymer. Polymer 2021, 212, 123273.

38

Liang, Y. L.; Jing, Y.; Gheytani, S.; Lee, K. Y.; Liu, P.; Facchetti, A.; Yao, Y. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 2017, 16, 841–848.

39

Mehr, S. H. M.; Depmeier, H.; Fukuyama, K.; Maghami, M.; MacLachlan, M. J. Formylation of phenols using formamidine acetate. Org. Biomol. Chem. 2017, 15, 581–583.

40

Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

41

Rao, C. V.; Ishikawa, Y. Activity, selectivity, and anion-exchange membrane fuel cell performance of virtually metal-free nitrogen-doped carbon nanotube electrodes for oxygen reduction reaction. J. Phys. Chem. C 2012, 116, 4340–4346.

42

Nokami, T.; Matsuo, T.; Inatomi, Y.; Hojo, N.; Tsukagoshi, T.; Yoshizawa, H.; Shimizu, A.; Kuramoto, H.; Komae, K.; Tsuyama, H. et al. Polymer-bound pyrene-4, 5, 9, 10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. J. Am. Chem. Soc. 2012, 134, 19694–19700.

43

Ni, Y. X.; Lu, Y.; Zhang, K.; Chen, J. Aromaticity/antiaromaticity effect on activity of transition metal macrocyclic complexes towards electrocatalytic oxygen reduction. ChemSusChem 2021, 14, 1835–1839.

File
12274_2021_4043_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 September 2021
Revised: 13 November 2021
Accepted: 05 December 2021
Published: 14 January 2022
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by MICINN (Nos. PID2019-106268GB-C33, CTQ2017-84309-C2-1-R, RED2018-102412-T, and FIS2017-82415-R) and Comunidad Autónoma de Madrid Transnanoavansens Program (No. S2018/NMT-4349). PGA is acknowledged to Comunidad de Madrid for a predoctoral contract.

Return