Journal Home > Volume 15 , Issue 5

Patterned silver nanowire (AgNW) networks have been widely used as transparent electrodes in many optoelectrical devices. However, obvious patterning visibility and poor thermostability of AgNW are still limiting its practical application. Herein, we report self-assembled monolayer (SAM) modulated Plateau-Rayleigh instability (PRI) of AgNW, which allows invisible patterning and superior stability of the AgNW network. Two opposite effects of different SAMs on the PRI are identified: the alkanethiol SAMs activate surface atom diffusion while the mercaptobenzoheterocyclic (MBH) SAMs suppress the diffusion. The degradation temperature of the AgNWs can be therefore, for the first time, tuned in the range of 193–381 °C, so that the AgNW network can be patterned via PRI with a tiny optical difference between the insulative and conductive regions, i.e., patterning invisible. Besides, the MBH SAMs provide AgNW with excellent durability under thermal annealing and oxidation, which enhances the maximum heating temperature of the AgNW transparent heater by over 120 °C. Beyond the micro-patterning, we consider that the developed SAM strategy can be extended to other metal nanowires for stability improvement and has huge potential in nanoengineering of one-dimensional metal materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-assembled monolayer modulated Plateau-Rayleigh instability and enhanced chemical stability of silver nanowire for invisibly patterned, stable transparent electrodes

Show Author's information Gui-Shi Liu1Huajian Zheng1Zijie Zeng1Yexiong Wang1Weidong Guo1Ting Wang3Heng Chen1Yunsen Chen1Shiqi Hu1Lei Chen1Yaofei Chen1Weiguang Xie2Bo-Ru Yang3( )Yunhan Luo1( )
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China

Abstract

Patterned silver nanowire (AgNW) networks have been widely used as transparent electrodes in many optoelectrical devices. However, obvious patterning visibility and poor thermostability of AgNW are still limiting its practical application. Herein, we report self-assembled monolayer (SAM) modulated Plateau-Rayleigh instability (PRI) of AgNW, which allows invisible patterning and superior stability of the AgNW network. Two opposite effects of different SAMs on the PRI are identified: the alkanethiol SAMs activate surface atom diffusion while the mercaptobenzoheterocyclic (MBH) SAMs suppress the diffusion. The degradation temperature of the AgNWs can be therefore, for the first time, tuned in the range of 193–381 °C, so that the AgNW network can be patterned via PRI with a tiny optical difference between the insulative and conductive regions, i.e., patterning invisible. Besides, the MBH SAMs provide AgNW with excellent durability under thermal annealing and oxidation, which enhances the maximum heating temperature of the AgNW transparent heater by over 120 °C. Beyond the micro-patterning, we consider that the developed SAM strategy can be extended to other metal nanowires for stability improvement and has huge potential in nanoengineering of one-dimensional metal materials.

Keywords: thermal stability, self-assembled monolayer, Plateau-Rayleigh instability, invisible patterning

References(52)

1

Liu, G. S.; Qiu, J. S.; Xu, D. H.; Zhou, X. Z.; Zhong, D. Y.; Shieh, H. P. D.; Yang, B. R. Fabrication of embedded silver nanowires on arbitrary substrates with enhanced stability via chemisorbed alkanethiolate. ACS Appl. Mater. Interfaces 2017, 9, 15130–15138.

2

He, Z.; Wang, L.; Liu, G. S.; Xu, Y. W.; Qiu, Z. G.; Zhong, M.; Li, X. D.; Gui, X. C.; Lin, Y. S.; Qin, Z. et al. Constructing electrophoretic displays on foldable paper-based electrodes by a facile transferring method. ACS Appl. Electron. Mater. 2020, 2, 1335–1342.

3

Cairns, D. R.; Witte II, R. P.; Sparacin, D. K.; Sachsman, S. M.; Paine, D. C.; Crawford, G. P.; Newton, R. R. Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl. Phys. Lett. 2000, 76, 1425–1427.

4

Li, W. T.; Zhang, H.; Shi, S. W.; Xu, J. X.; Qin, X.; He, Q. Q.; Yang, K. C.; Dai, W. B.; Liu, G.; Zhou, Q. G. et al. Recent progress in silver nanowire networks for flexible organic electronics. J. Mater. Chem. C 2020, 8, 4636–4674.

5

Kim, S.; Kim, S. Y.; Kim, J.; Kim, J. H. Highly reliable AgNW/PEDOT: PSS hybrid films: Efficient methods for enhancing transparency and lowering resistance and haziness. J. Mater. Chem. C 2014, 2, 5636–5643.

6

Cho, E. H.; Hwang, J.; Kim, J.; Lee, J.; Kwak, C.; Lee, C. S. Low-visibility patterning of transparent conductive silver-nanowire films. Opt. Express 2015, 23, 26095–26103.

7

Yoo, B.; Kim, Y.; Han, C. J.; Oh, M. S.; Kim, J. W. Recyclable patterning of silver nanowire percolated network for fabrication of flexible transparent electrode. Appl. Surf. Sci. 2018, 429, 151–157.

8

Ko, D.; Gu, B.; Kang, S. J.; Jo, S.; Hyun, D. C.; Kim, C. S.; Kim, J. Critical work of adhesion for economical patterning of silver nanowire-based transparent electrodes. J. Mater. Chem. A 2019, 7, 14536–14544.

9

Wan, T.; Guan, P. Y.; Guan, X. W.; Hu, L.; Wu, T.; Cazorla, C.; Chu, D. W. Facile patterning of silver nanowires with controlled polarities via inkjet-assisted manipulation of interface adhesion. ACS Appl. Mater. Interfaces 2020, 12, 34086–34094.

10

Park, J.; Kim, G.; Lee, B.; Lee, S.; Won, P.; Yoon, H.; Cho, H.; Ko, S. H.; Hong, Y. Highly customizable transparent silver nanowire patterning via inkjet-printed conductive polymer templates formed on various surfaces. Adv. Mater. Technol. 2020, 5, 2000042.

11

Liu, G. S.; Yang, F.; Xu, J. Z.; Kong, Y. F.; Zheng, H. J.; Chen, L.; Chen, Y. F.; Wu, M. X.; Yang, B. R.; Luo, Y. H. et al. Ultrasonically patterning silver nanowire-acrylate composite for highly sensitive and transparent strain sensors based on parallel cracks. ACS Appl. Mater. Interfaces 2020, 12, 47729–47738.

12
Liu, G. S.; Wang, T.; Wang, Y. X.; Zheng, H. J.; Chen, Y. S.; Zeng, Z. J.; Chen, L.; Chen, Y. F.; Yang, B. R.; Luo, Y. H. et al. One-step plasmonic welding and photolithographic patterning of silver nanowire network by UV-programable surface atom diffusion. Nano Res., in press, DOI: 10.1007/s12274-021-3796-y.https://doi.org/10.1007/s12274-021-3796-y
DOI
13

Finn, D. J.; Lotya, M.; Coleman, J. N. Inkjet printing of silver nanowire networks. ACS Appl. Mater. Interfaces 2015, 7, 9254–9261.

14

Liu, G. S.; Liu, C.; Chen, H. J.; Cao, W.; Qiu, J. S.; Shieh, H. P. D.; Yang, B. R. Electrically robust silver nanowire patterns transferrable onto various substrates. Nanoscale 2016, 8, 5507–5515.

15

Madaria, A. R.; Kumar, A.; Ishikawa, F. N.; Zhou, C. W. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010, 3, 564–573.

16

Lin, Y.; Yuan, W.; Ding, C.; Chen, S. L.; Su, W. M.; Hu, H. L.; Cui, Z.; Li, F. S. Facile and efficient patterning method for silver nanowires and its application to stretchable electroluminescent displays. ACS Appl. Mater. Interfaces 2020, 12, 24074–24085.

17

Xu, X. W.; Liu, Z. F.; He, P.; Yang, J. L. Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring. J. Phys. D: Appl. Phys. 2019, 52, 455401.

18

Liang, J. J.; Tong, K.; Pei, Q. B. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater. 2016, 28, 5986–5996.

19

Um, D. S.; Lee, Y.; Kim, T.; Lim, S.; Lee, H.; Ha, M.; Khan, Z.; Kang, S.; Kim, M. P.; Kim, J. Y. et al. High-resolution filtration patterning of silver nanowire electrodes for flexible and transparent optoelectronic devices. ACS Appl. Mater. Interfaces 2020, 12, 32154–32162.

20

Yang, M.; Kim, S. W.; Zhang, S. Y.; Park, D. Y.; Lee, C. W.; Ko, Y. H.; Yang, H. F.; Xiao, Y.; Chen, G.; Li, M. Y. Facile and highly efficient fabrication of robust Ag nanowire-elastomer composite electrodes with tailored electrical properties. J. Mater. Chem. C 2018, 6, 7207–7218.

21

Fang, Y. S.; Wu, Z. C.; Li, J.; Jiang, F. Y.; Zhang, K.; Zhang, Y. L.; Zhou, Y. H.; Zhou, J.; Hu, B. High-performance hazy silver nanowire transparent electrodes through diameter tailoring for semitransparent photovoltaics. Adv. Funct. Mater. 2018, 28, 1705409.

22

Preston, C.; Xu, Y. L.; Han, X. G.; Munday, J. N.; Hu, L. B. Optical haze of transparent and conductive silver nanowire films. Nano Res. 2013, 6, 461–468.

23

Bergin, S. M.; Chen, Y. H.; Rathmell, A. R.; Charbonneau, P.; Li, Z. Y.; Wiley, B. J. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 2012, 4, 1996–2004.

24

Hwang, J.; Lee, H.; Woo, Y. Enhancing the optical properties of silver nanowire transparent conducting electrodes by the modification of nanowire cross-section using ultra-violet illumination. J. Appl. Phys. 2016, 120, 174903.

25

Kumar, A.; Vidhyadhiraja, N. S.; Kulkarni, G. U. Current distribution in conducting nanowire networks. J. Appl. Phys. 2017, 122, 045101.

26

Wan, T.; Pan, Y.; Du, H. W.; Qu, B.; Yi, J. B.; Chu, D. W. Threshold switching induced by controllable fragmentation in silver nanowire networks. ACS Appl. Mater. Interfaces 2018, 10, 2716–2724.

27

Chae, W. H.; Sannicolo, T.; Grossman, J. C. Double-Sided graphene oxide encapsulated silver nanowire transparent electrode with improved chemical and electrical stability. ACS Appl. Mater. Interfaces 2020, 12, 17909–17920.

28

Yang, Y.; Chen, S.; Li, W. L.; Li, P.; Ma, J. G.; Li, B. S.; Zhao, X. N.; Ju, Z. S.; Chang, H. C.; Xiao, L. et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 2020, 14, 8754–8765.

29

Chen, D.; Liang, J. J.; Liu, C.; Saldanha, G.; Zhao, F. C.; Tong, K.; Liu, J.; Pei, Q. B. Thermally stable silver nanowire-polyimide transparent electrode based on atomic layer deposition of zinc oxide on silver nanowires. Adv. Funct. Mater. 2015, 25, 7512–7520.

30

Day, R. W.; Mankin, M. N.; Gao, R. X.; No, Y. S.; Kim, S. K.; Bell, D. C.; Park, H. G.; Lieber, C. M. Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates. Nat. Nanotechnol. 2015, 10, 345–352.

31

Xue, Z. G.; Xu, M. K.; Zhao, Y. L.; Wang, J.; Jiang, X. F.; Yu, L. W.; Wang, J. Z.; Xu, J.; Shi, Y.; Chen, K. J. et al. Engineering island-chain silicon nanowires via a droplet mediated Plateau-Rayleigh transformation. Nat. Commun. 2016, 7, 12836.

32

Ciuculescu, D.; Dumestre, F.; Comesaña-Hermo, M.; Chaudret, B.; Spasova, M.; Farle, M.; Amiens, C. Single-crystalline Co nanowires: Synthesis, thermal stability, and carbon coating. Chem. Mater. 2009, 21, 3987–3995.

33

Huber, S. E.; Warakulwit, C.; Limtrakul, J.; Tsukuda, T.; Probst, M. Thermal stabilization of thin gold nanowires by surfactant-coating: A molecular dynamics study. Nanoscale 2012, 4, 585–590.

34

Takahata, R.; Yamazoe, S.; Warakulwit, C.; Limtrakul, J.; Tsukuda, T. Rayleigh instability and surfactant-mediated stabilization of ultrathin gold nanorods. J. Phys. Chem. C 2016, 120, 17006–17010.

35

Song, M.; Kartawira, K.; Hillaire, K. D.; Li, C.; Eaker, C. B.; Kiani, A.; Daniels, K. E.; Dickey, M. D. Overcoming Rayleigh-Plateau instabilities: Stabilizing and destabilizing liquid-metal streams via electrochemical oxidation. Proc. Natl. Acad. Sci. USA 2020, 117, 19026–19032.

36

Bettscheider, S.; Kraus, T.; Fleck, N. A. On the geometric stability of an inorganic nanowire and an organic ligand shell. J. Mech. Phys. Solids 2019, 123, 3–19.

37

Bantz, K. C.; Nelson, H. D.; Haynes, C. L. Plasmon-enabled study of self-assembled alkanethiol ordering on roughened ag substrates. J. Phys. Chem. C 2012, 116, 3585–3593.

38

Finšgar, M.; Kek Merl, D. An electrochemical, long-term immersion, and XPS study of 2-mercaptobenzothiazole as a copper corrosion inhibitor in chloride solution. Corros. Sci. 2014, 83, 164–175.

39

Finšgar, M. Surface analysis of the 2-mercaptobenzothiazole corrosion inhibitor on 6082 aluminum alloy using ToF-SIMS and XPS. Anal. Methods 2020, 12, 456–465.

40

Vernack, E.; Costa, D.; Tingaut, P.; Marcus, P. DFT studies of 2-mercaptobenzothiazole and 2-mercaptobenzimidazole as corrosion inhibitors for copper. Corros. Sci. 2020, 174, 108840.

41

Ehler, T. T.; Malmberg, N.; Noe, L. J. Characterization of self-assembled alkanethiol monolayers on silver and gold using surface plasmon spectroscopy. J. Phys. Chem. B 1997, 101, 1268–1272.

42

Engelkes, V. B.; Beebe, J. M.; Frisbie, C. D. Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: Effect of metal work function and applied bias on tunneling efficiency and contact resistance. J. Am. Chem. Soc. 2004, 126, 14287–14296.

43

Kolipaka, S.; Aithal, R. K.; Kuila, D. Fabrication and characterization of an indium tin oxide-octadecanethiol-aluminum junction for molecular electronics. Appl. Phys. Lett. 2006, 88, 233104.

44

Liu, G. Y.; Zeng, H. B.; Lu, Q. Y.; Zhong, H.; Choi, P.; Xu, Z. H. Adsorption of mercaptobenzoheterocyclic compounds on sulfide mineral surfaces: A density functional theory study of structure-reactivity relations. Colloids Surf. A: Physicochem. Eng. Aspects 2012, 409, 1–9.

45

Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1170.

46

Kozlica, D. K.; Kokalj, A.; Milošev, I. Synergistic effect of 2-mercaptobenzimidazole and octylphosphonic acid as corrosion inhibitors for copper and aluminium-An electrochemical, XPS, FTIR and DFT study. Corros. Sci. 2021, 182, 109082.

47

Fowlkes, J. D.; Kondic, L.; Diez, J.; Wu, Y. Y.; Rack, P. D. Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films. Nano Lett. 2011, 11, 2478–2485.

48

Zhong, L.; Sansoz, F.; He, Y.; Wang, C. M.; Zhang, Z.; Mao, S. X. Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals. Nat. Mater. 2017, 16, 439–445.

49

Nichols, F. A. On the spheroidization of rod-shaped particles of finite length. J. Mater. Sci. 1976, 11, 1077–1082.

50

Liu, G. S.; He, M. Y.; Wang, T.; Wang, L.; He, Z.; Zhan, R. Z.; Chen, L.; Chen, Y. F.; Yang, B. R.; Luo, Y. H. et al. Optically programmable Plateau-Rayleigh instability for high-resolution and scalable morphology manipulation of silver nanowires for flexible optoelectronics. ACS Appl. Mater. Interfaces 2020, 12, 53984–53993.

51

Wu, X. C.; Wiame, F.; Maurice, V.; Marcus, P. 2-Mercaptobenzimidazole films formed at ultra-low pressure on copper: Adsorption, thermal stability and corrosion inhibition performance. Appl. Surf. Sci. 2020, 527, 146814.

52
Liu, G. S.; Xu, Y.; Kong, Y.; Wang, L.; Wang, J.; Xie, X.; Luo, Y. ; Yang, B.-R. Comprehensive stability improvement of silver nanowire networks via self-assembled mercapto inhibitors. ACS Appl. Mater. Inter. 2018, 10, 37699–37708.https://doi.org/10.1021/acsami.8b13329
DOI
File
12274_2021_4042_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 September 2021
Revised: 24 November 2021
Accepted: 05 December 2021
Published: 31 January 2022
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 61904067, 62175094, 61805108, and 62075088), Science and Technology Projects in Guangzhou (No. 202102020758), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515011498), Scientific and Technological Projection of Guangdong province (No. 2020B1212060030), Key-Area Research and Development Program of Guangdong Province (No. 2019B010934001), and Fundamental Research Funds for the Central Universities (Nos. 21621405 and 21620328). We thank M.S. Yuwang Xu for valuable discussion.

Return