Journal Home > Volume 16 , Issue 4

Controlled growth of islands on plasmonic metal nanoparticles represents a novel strategy in creating unique morphologies that are difficult to achieve by conventional colloidal synthesis processes, where the nanoparticle morphologies are typically determined by the preferential development of certain crystal facets. This work exploits an effective surface-engineering strategy for site-selective island growth of Au on anisotropic Au nanostructures. Selective ligand modification is first employed to direct the site-selective deposition of a thin transition layer of a secondary metal, e.g., Pd, which has a considerable lattice mismatch with Au. The selective deposition of Pd on the original seeds produces a high contrast in the surface strain that guides the subsequent site-selective growth of Au islands. This strategy proves effective in not only inducing the island growth of Au on Au nanostructures but also manipulating the location of grown islands. By taking advantage of the iodide-assisted oxidative ripening process and the surface strain profile on Au nanostructures, we further demonstrate the precise control of the islands’ number, coverage, and wetting degree, allowing fine-tuning of nanoparticles’ optical properties.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Engineering surface strain for site-selective island growth of Au on anisotropic Au nanostructures

Show Author's information Fan Yang1Ji Feng1Jinxing Chen1,Zuyang Ye1Jihua Chen2Dale K. Hensley2Yadong Yin1( )
Department of Chemistry, University of California, Riverside, California 92521, USA
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6494, USA
Present addtess: Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China

Abstract

Controlled growth of islands on plasmonic metal nanoparticles represents a novel strategy in creating unique morphologies that are difficult to achieve by conventional colloidal synthesis processes, where the nanoparticle morphologies are typically determined by the preferential development of certain crystal facets. This work exploits an effective surface-engineering strategy for site-selective island growth of Au on anisotropic Au nanostructures. Selective ligand modification is first employed to direct the site-selective deposition of a thin transition layer of a secondary metal, e.g., Pd, which has a considerable lattice mismatch with Au. The selective deposition of Pd on the original seeds produces a high contrast in the surface strain that guides the subsequent site-selective growth of Au islands. This strategy proves effective in not only inducing the island growth of Au on Au nanostructures but also manipulating the location of grown islands. By taking advantage of the iodide-assisted oxidative ripening process and the surface strain profile on Au nanostructures, we further demonstrate the precise control of the islands’ number, coverage, and wetting degree, allowing fine-tuning of nanoparticles’ optical properties.

Keywords: plasmonic, seed-mediated growth, Au nanorods, island growth, site-selective

References(32)

[1]

Zhang, Z. L.; Zhang, C. Y.; Zheng, H. R.; Xu, H. X. Plasmon-driven catalysis on molecules and nanomaterials. Acc. Chem. Res. 2019, 52, 2506–2515.

[2]

Li, M.; Cushing, S. K.; Wu, N. Q. Plasmon-enhanced optical sensors: A review. Analyst 2015, 140, 386–406.

[3]

Khlebtsov, N. G.; Dykman, L. A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1–35.

[4]

Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

[5]

Xia, Y. N.; Gilroy, K. D.; Peng, H. C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60–95.

[6]

Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880–4910.

[7]

Polte, J. Fundamental growth principles of colloidal metal nanoparticles – a new perspective. CrystEngComm 2015, 17, 6809–6830.

[8]

Chow, T. H.; Li, N. N.; Bai, X. P.; Zhuo, X. L.; Shao, L.; Wang, J. F. Gold nanobipyramids: An emerging and versatile type of plasmonic nanoparticles. Acc. Chem. Res. 2019, 52, 2136–2146.

[9]

Chen, J. X.; Bai, Y. C.; Feng, J.; Yang, F.; Xu, P. P.; Wang, Z. C.; Zhang, Q.; Yin, Y. D. Anisotropic seeded growth of Ag nanoplates confined in shape-deformable spaces. Angew. Chem., Int. Ed. 2021, 60, 4117–4124.

[10]

Jia, J.; Liu, G. Y.; Xu, W. J.; Tian, X. L.; Li, S. B.; Han, F.; Feng, Y. H.; Dong, X. C.; Chen, H. Y. Fine-tuning the homometallic interface of Au-on-Au nanorods and their photothermal therapy in the NIR-II window. Angew. Chem., Int. Ed. 2020, 59, 14443–14448.

[11]

Huang, J. F.; Zhu, Y. H.; Liu, C. X.; Shi, Z.; Fratalocchi, A.; Han, Y. Unravelling thiol’s role in directing asymmetric growth of Au nanorod-Au nanoparticle dimers. Nano Lett. 2016, 16, 617–623.

[12]

Lee, H. E.; Kim, R. M.; Ahn, H. Y.; Lee, Y. Y.; Byun, G. H.; Im, S. W.; Mun, J.; Rho, J.; Nam, K. T. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat. Commun. 2020, 11, 263.

[13]

Ma, Y. J.; Cao, Z. Z.; Hao, J. J.; Zhou, J. H.; Yang, Z. J.; Yang, Y. Z.; Wei, J. J. Controlled synthesis of Au chiral propellers from seeded growth of Au nanoplates for chiral differentiation of biomolecules. J. Phys. Chem. C 2020, 124, 24306–24314.

[14]

Tan, R. L. S.; Chong, W. H.; Feng, Y. H.; Song, X. H.; Tham, C. L.; Wei, J.; Lin, M.; Chen, H. Y. Nanoscrews: Asymmetrical etching of silver nanowires. J. Am. Chem. Soc. 2016, 138, 10770–10773.

[15]

Wang, Z. X.; He, B. W.; Xu, G. F.; Wang, G. J.; Wang, J. Y.; Feng, Y. H.; Su, D. M.; Chen, B.; Li, H.; Wu, Z. H. et al. Transformable masks for colloidal nanosynthesis. Nat. Commun. 2018, 9, 563.

[16]

Yip, H. K.; Zhu, X. Z.; Zhuo, X. L.; Jiang, R. B.; Yang, Z.; Wang, J. F. Gold nanobipyramid-enhanced hydrogen sensing with plasmon red shifts reaching ≈140 nm at 2 vol% hydrogen concentration. Adv. Opt. Mater. 2017, 5, 1700740.

[17]

Feng, J.; Xu, D. D.; Yang, F.; Chen, J. X.; Wu, C. L. M.; Yin, Y. D. Surface engineering and controlled ripening for seed-mediated growth of au islands on Au nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 16958–16964.

[18]

Feng, Y. H.; He, J. T.; Wang, H.; Tay, Y. Y.; Sun, H.; Zhu, L. F.; Chen, H. Y. An unconventional role of ligand in continuously tuning of metal–metal interfacial strain. J. Am. Chem. Soc. 2012, 134, 2004–2007.

[19]

Feng, Y. H.; Wang, Y. W.; He, J. T.; Song, X. H.; Tay, Y. Y.; Hng, H. H.; Ling, X. Y.; Chen, H. Y. Achieving site-specificity in multistep colloidal synthesis. J. Am. Chem. Soc. 2015, 137, 7624–7627.

[20]

Wang, F.; Cheng, S.; Bao, Z. H.; Wang, J. F. Anisotropic overgrowth of metal heterostructures induced by a site-selective silica coating. Angew. Chem., Int. Ed. 2013, 52, 10344–10348.

[21]

Li, F.; Wang, K.; Tan, Z. P.; Guo, C.; Liu, Y. Y.; Tan, H. Y.; Zhang, L. B.; Zhu, J. T. Solvent quality-mediated regioselective modification of gold nanorods with thiol-terminated polymers. Langmuir 2020, 36, 15162–15168.

[22]

Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.

[23]

DeSantis, C. J.; Weiner, R. G.; Radmilovic, A.; Bower, M. M.; Skrabalak, S. E. Seeding bimetallic nanostructures as a new class of plasmonic colloids. J. Phys. Chem. Lett. 2013, 4, 3072–3082.

[24]

Ding, Y.; Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Atomic structure of Au-Pd bimetallic alloyed nanoparticles. J. Am. Chem. Soc. 2010, 132, 12480–12486.

[25]

Fan, Q. K.; Yang, H.; Ge, J.; Zhang, S. M.; Liu, Z. J.; Lei, B.; Cheng, T.; Li, Y. Y.; Yin, Y. D.; Gao, C. B. Customizable ligand exchange for tailored surface property of noble metal nanocrystals. Research 2020, 2020, 2131806.

[26]

Lewis, D. J.; Zornberg, L. Z.; Carter, D. J. D.; Macfarlane, R. J. Single-crystal Winterbottom constructions of nanoparticle superlattices. Nat. Mater. 2020, 19, 719–724.

[27]

Yin, J. C.; Wu, H. N.; Wang, X.; Tian, L.; Yang, R. L.; Liu, L. Z.; Shao, Y. Z. Plasmonic nano-dumbbells for enhanced photothermal and photodynamic synergistic damage of cancer cells. Appl. Phys. Lett. 2020, 116, 163702.

[28]

Zhang, Y. F.; Song, T. J.; Feng, T.; Wan, Y. L.; Blum, N. T.; Liu, C. B.; Zheng, C. Q.; Zhao, Z. Y.; Jiang, T.; Wang, J. W. et al. Plasmonic modulation of gold nanotheranostics for targeted NIR-II photothermal-augmented immunotherapy. Nano Today 2020, 35, 100987.

[29]

Zhu, X. Z.; Yip, H. K.; Zhuo, X. L.; Jiang, R. B.; Chen, J. L.; Zhu, X. M.; Yang, Z.; Wang, J. F. Realization of red plasmon shifts up to ~ 900 nm by AgPd-tipping elongated Au nanocrystals. J. Am. Chem. Soc. 2017, 139, 13837–13846.

[30]

Ni, W. H.; Kou, X. S.; Yang, Z.; Wang, J. F. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2008, 2, 677–686.

[31]

Chen, L.; Ji, F.; Xu, Y.; He, L.; Mi, Y. F.; Bao, F.; Sun, B. Q.; Zhang, X. H.; Zhang, Q. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 2014, 14, 7201–7206.

[32]

Kuo, B. H.; Hsia, C. F.; Chen, T. N.; Huang, M. H. Systematic shape evolution of gold nanocrystals achieved through adjustment in the amount of HAuCl4 solution used. J. Phys. Chem. C 2018, 122, 25118–25126.

File
12274_2021_4040_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 August 2021
Revised: 15 November 2021
Accepted: 04 December 2021
Published: 18 January 2022
Issue date: April 2023

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the US National Science Foundation (CHE-1808788).

Return