Journal Home > Volume 15 , Issue 5

Sonodynamic therapy (SDT) has aroused considerable momentum in cancer therapy due to its abilities of deep penetration, low toxicity, and noninvasion, while insufficient tumor accumulation of sonosensitizers is a major obstacle for SDT effect. Here, we developed a 4T1 cancer cell-macrophage hybrid membrane (HM)-camouflaged sonosensitizer nanoplatform by encapsulating photochlor (HPPH)-loaded albumin nanoparticles (PHNPs). The experimental results proved that the HM-coated biomimetic NPs (PHNPs@HM) could express the characteristic membrane proteins of both cancer cells and macrophages, remarkedly enhancing the effective targeting and endocytosis to 4T1 cells through homologous adhesion recognition and immune escaping. Meanwhile, as a novel sonosensitizer, HPPH could generate amount of reactive oxygen species (ROS) under ultrasound (US) irradiation and exhibit obvious SDT efficiency to inhibit 4T1 tumor growth through ROS-induced cell apoptosis. This study provides a novel and multifunctional biomimetic sonosensitizer system to enhance SDT efficiency.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Cancer-macrophage hybrid membrane-camouflaged photochlor for enhanced sonodynamic therapy against triple-negative breast cancer

Show Author's information Lishan Zhang1,2,§Ting Yin1,2,§Baozhen Zhang2,§Chong Yan1Chengyu Lu1Lanlan Liu2Ze Chen2Hui Ran1,2Qingxia Shi1,2Hong Pan2( )Aiqing Ma1,2( )Lintao Cai2( )
Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan 523808, China
Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China

§ Lishan Zhang, Ting Yin, and Baozhen Zhang contributed equally to this work.

Abstract

Sonodynamic therapy (SDT) has aroused considerable momentum in cancer therapy due to its abilities of deep penetration, low toxicity, and noninvasion, while insufficient tumor accumulation of sonosensitizers is a major obstacle for SDT effect. Here, we developed a 4T1 cancer cell-macrophage hybrid membrane (HM)-camouflaged sonosensitizer nanoplatform by encapsulating photochlor (HPPH)-loaded albumin nanoparticles (PHNPs). The experimental results proved that the HM-coated biomimetic NPs (PHNPs@HM) could express the characteristic membrane proteins of both cancer cells and macrophages, remarkedly enhancing the effective targeting and endocytosis to 4T1 cells through homologous adhesion recognition and immune escaping. Meanwhile, as a novel sonosensitizer, HPPH could generate amount of reactive oxygen species (ROS) under ultrasound (US) irradiation and exhibit obvious SDT efficiency to inhibit 4T1 tumor growth through ROS-induced cell apoptosis. This study provides a novel and multifunctional biomimetic sonosensitizer system to enhance SDT efficiency.

Keywords: biomimetic materials, sonodynamic therapy, hybrid cell membrane, photochlor sonosensitizer, noninvasive treatment

References(29)

1

Vahrmeijer, A. L.; Hutteman, M.; van der Vorst, J. R.; van de Velde, C. J. H.; Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 2013, 10, 507–518.

2

Li, Y.; Zhao, R. J.; Han, X. F.; Shou, J. W.; You, L. K.; Jiang, H. L.; Zhou, X. Y.; Liu, Z.; Pan, H. M.; Han, W. D. Lymph node involvement in pancreatic neuroendocrine tumors: Significance as a predictor of survival. J. Bio-X Res. 2019, 2, 25–33.

3

Li, Z. L.; Han, J.; Yu, L. D.; Qian, X. Q.; Xing, H.; Lin, H.; Wu, M. C.; Yang, T.; Chen, Y. Synergistic sonodynamic/chemotherapeutic suppression of hepatocellular carcinoma by targeted biodegradable mesoporous nanosonosensitizers. Adv. Funct. Mater. 2018, 28, 1800145.

4

Ma, A. Q.; Chen, H. Q.; Cui, Y. H.; Luo, Z. Y.; Liang, R. J.; Wu, Z. H.; Chen, Z.; Yin, T.; Ni, J.; Zheng, M. B. et al. Metalloporphyrin complex-based nanosonosensitizers for deep-tissue tumor theranostics by noninvasive sonodynamic therapy. Small 2019, 15, 1804028.

5

Huang, P.; Qian, X. Q.; Chen, Y.; Yu, L. D.; Lin, H.; Wang, L. Y.; Zhu, Y. F.; Shi, J. L. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J. Am. Chem. Soc. 2017, 139, 1275–1284.

6

Son, S.; Kim, J. H.; Wang, X. W.; Zhang, C. L.; Yoon, S. A.; Shin, J.; Sharma, A.; Lee, M. H.; Cheng, L.; Wu, J. S. et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 2020, 49, 3244–3261.

7

Qian, X. Q.; Zheng, Y. Y.; Yu, C. Micro/nanoparticle-augmented sonodynamic therapy (SDT): Breaking the depth shallow of photoactivation. Adv. Mater. 2016, 28, 8097–8129.

8

Pan, X. T.; Wang, H. Y.; Wang, S. H.; Sun, X.; Wang, L. J.; Wang, W. W.; Shen, H. Y.; Liu, H. Y. Sonodynamic therapy (SDT): A novel strategy for cancer nanotheranostics. Sci. China Life Sci. 2018, 61, 415–426.

9

Masri, A.; Anwar, A.; Khan, N. A.; Siddiqui, R. The use of nanomedicine for targeted therapy against bacterial infections. Antibiotics 2019, 8, 260.

10

Lammers, T.; Ferrari, M. The success of nanomedicine. Nano Today 2020, 31, 100853.

11

Luo, Z. Y.; Tian, H.; Liu, L. L.; Chen, Z. K.; Liang, R. J.; Chen, Z.; Wu, Z. H.; Ma, A. Q.; Zheng, M. B.; Cai, L. T. Tumor-targeted hybrid protein oxygen carrier to simultaneously enhance hypoxia-dampened chemotherapy and photodynamic therapy at a single dose. Theranostics 2018, 8, 3584–3596.

12

Pan, X. T.; Bai, L. X.; Wang, H.; Wu, Q. Y.; Wang, H. Y.; Liu, S.; Xu, B. L.; Shi, X. H.; Liu, H. Y. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv. Mater. 2018, 30, 1800180.

13

Zhou, Y.; Han, X. X.; Jing, X. X.; Chen, Y. Construction of silica-based micro/nanoplatforms for ultrasound theranostic biomedicine. Adv. Healthc. Mater. 2017, 6, 1700646.

14

Alea-Reyes, M. E.; Rodrigues, M.; Serrà, A.; Mora, M.; Sagristá, M. L.; González, A.; Durán, S.; Duch, M.; Plaza, J. A.; Vallés, E. et al. Nanostructured materials for photodynamic therapy: Synthesis, characterization and in vitro activity. RSC Adv. 2017, 7, 16963–16976.

15
Pan, H.; Zheng, M. B.; Ma, A. Q.; Liu, L. L.; Cai, L. T. Cell/bacteria-based bioactive materials for cancer immune modulation and precision therapy. Adv. Mater., in press, DOI: https//doi.org/10.1002/adma.202100241.
16

Chen, Z.; Zhao, P. F.; Luo, Z. Y.; Zheng, M. B.; Tian, H.; Gong, P.; Gao, G. H.; Pan, H.; Liu, L. L.; Ma, A. Q. et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 2016, 10, 10049–10057.

17

Luo, G. F.; Chen, W. H.; Zeng, X.; Zhang, X. Z. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem. Soc. Rev. 2021, 50, 945–985.

18

Hussain, Z.; Rahim, M. A.; Jan, N.; Shah, H.; Rawas-Qalaji, M.; Khan, S.; Sohail, M.; Thu, H. E.; Ramli, N. A.; Sarfraz, R. M. et al. Cell membrane cloaked nanomedicines for bio-imaging and immunotherapy of cancer: Improved pharmacokinetics, cell internalization and anticancer efficacy. J. Control. Release 2021, 335, 130–157.

19

Xu, L.; Wu, S.; Wang, J. Cancer cell membrane-coated nanocarriers for homologous target inhibiting the growth of hepatocellular carcinoma. J. Bioact. Compat. Polym. 2019, 34, 58–71.

20

Jin, J. F.; Bhujwalla, Z. M. Biomimetic nanoparticles camouflaged in cancer cell membranes and their applications in cancer theranostics. Front. Oncol. 2020, 9, 1560.

21

Tian, H.; Luo, Z. Y.; Liu, L. L.; Zheng, M. B.; Chen, Z.; Ma, A. Q.; Liang, R. J.; Han, Z. Q.; Lu, C. Y.; Cai, L. T. Cancer cell membrane-biomimetic oxygen nanocarrier for breaking hypoxia-induced chemoresistance. Adv. Funct. Mater. 2017, 27, 1703197.

22

Jiang, Q.; Liu, Y.; Guo, R. R.; Yao, X. X.; Sung, S.; Pang, Z. Q.; Yang, W. L. Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials 2019, 192, 292–308.

23

Wang, Y. C.; Luan, Z. Y.; Zhao, C. Y.; Bai, C. H.; Yang, K. J. Target delivery selective CSF-1R inhibitor to tumor-associated macrophages via erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle for cancer immunotherapy. Eur. J. Pharm. Sci. 2020, 142, 105136.

24

Gong, C. A.; Yu, X. Y.; You, B. M.; Wu, Y.; Wang, R.; Han, L.; Wang, Y. J.; Gao, S.; Yuan, Y. F. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy. J. Nanobiotechnol. 2020, 18, 92.

25

Chen, H. Y.; Deng, J.; Wang, Y.; Wu, C. Q.; Li, X.; Dai, H. W. Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomater. 2020, 112, 1–13.

26

Liao, Y. Y.; Zhang, Y. F.; Blum, N. T.; Lin, J.; Huang, P. Biomimetic hybrid membrane-based nanoplatforms: Synthesis, properties and biomedical applications. Nanoscale Horiz. 2020, 5, 1293–1302.

27

Fu, J. J.; Wang, D.; Mei, D.; Zhang, H. R.; Wang, Z. Y.; He, B.; Dai, W. B.; Zhang, H.; Wang, X. Q.; Zhang, Q. Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer. J. Control. Release 2015, 204, 11–19.

28

Ren, X. Q.; Zheng, R.; Fang, X. L.; Wang, X. F.; Zhang, X. Y.; Yang, W. L.; Sha, X. Y. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials 2016, 92, 13–24.

29

Sun, L.; Xu, Y. R.; Zhang, X. M.; Gao, Y.; Chen, J. M.; Zhou, A. W.; Lu, Q. B.; Wang, Z. Y.; Shao, K. F.; Wu, H. M. et al. Mesenchymal stem cells functionalized sonodynamic treatment for improving therapeutic efficacy and compliance of orthotopic oral cancer. Adv. Mater. 2020, 32, 2005295.

File
12274_2021_4039_MOESM1_ESM.pdf (615.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 October 2021
Revised: 30 November 2021
Accepted: 02 December 2021
Published: 18 January 2022
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81901864, 81971749, and 82072064), the Natural Science Foundation of Guangdong Province (Nos. 2021A1515010131 and 2019A1515011524), Guangdong Province Universities and Colleges Pearl River Scholar Fund (No. 4SG21006G), Shenzhen Science and Technology Program (Nos. JCYJ20170818162259843 and JCYJ20210324115607020), Guangdong Province Universities and Colleges Characteristic Innovation (Nos. 2021KTSCX035 and 2021KTSCX036), Special Funds of Scientific Technological Innovation of Undergraduates in Guangdong Province (Nos. pdjh2020b0260 and pdjh2020b0265), Guangdong Medical University PHD Funds (2021), Medical Scientific Research Foundation of Guangdong Province (No. A2021429), and Zhuhai Innovation and Entrepreneurship Team Project (No. ZH01110405180056PWC).

Return