AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Past, present and future of indium phosphide quantum dots

Houman Bahmani Jalali1,Sadra Sadeghi2,Itir Bakis Dogru Yuksel2,Asim Onal3Sedat Nizamoglu1,2,3( )
Graduate School of Biomedical Science and Engineering, Koç University, Istanbul 34450, Turkey
Department of Electric and Electronics Engineering, Koç University, Istanbul 34450, Turkey
Department of Material Science and Engineering, Koç University, Istanbul 34450, Turkey
Present address: Photonic Nanomaterials Group, Istituto Italiano di Tecnologia, Genova 16124, Italy
Present address: Department of Electrical and Computer Engineering, Queen's University, Kingston K7L 3N6, Canada
Present address: Nanophotonics Group, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht 3508 TA, The Netherlands
Show Author Information

Graphical Abstract

This review focuses on the history, recent development, and future aspect of synthesis and application of colloidal indium phosphide (InP) quantum dots (QDs).

Abstract

Indium phosphide (InP) colloidal quantum dots (QDs) have been drawn significant attention as a potentially less toxic alternative to cadmium-based QDs over the past two decades. The advances in their colloidal synthesis methods have allowed for the synthesis of a wide variety of compositions, heterojunctions, dopants, and ligands that enabled spectral tunability from blue to near-infrared, narrow emission linewidths, and perfect quantum yields approaching unity. Furthermore, it has higher covalency compared to cadmium chalcogenides leading to improved optical stability. The state-of-the-art InP QDs with appealing optical and electronic properties have excelled in many applications such as light-emitting diodes, luminescent solar concentrators (LSCs), and solar cells with high potential for commercialization. This review focuses on the history, recent development, and future aspect of synthesis and application of colloidal InP QDs.

References

1

Kovalenko, M. V.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D. V.; Kagan, C. R.; Klimov, V. I.; Rogach, A. L.; Reiss, P.; Milliron, D. J. et al. Prospects of nanoscience with nanocrystals. ACS Nano 2015, 9, 1012–1057.

2

Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building devices from colloidal quantum dots. Science 2016, 353, aac5523.

3

Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

4

De Franco, M.; Cirignano, M.; Cavattoni, T.; Jalali, H. B.; Prato, M.; Di Stasio, F. Facile purification protocol of CsPbBr3 nanocrystals for light-emitting diodes with improved performance. Optical Materials: X 2022, 13, 100124.

5

Imran, M.; Mai, B. T.; Goldoni, L.; Cirignano, M.; Jalali, H. B.; Di Stasio, F.; Pellegrino, T.; Manna, L. Switchable anion exchange in polymer-encapsulated APbX3 nanocrystals delivers stable all-perovskite white emitters. ACS Energy Lett. 2021, 6, 2844–2853.

6

Meinardi, F.; McDaniel, H.; Carulli, F.; Colombo, A.; Velizhanin, K. A.; Makarov, N. S.; Simonutti, R.; Klimov, V. I.; Brovelli, S. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotechnol 2015, 10, 878–885.

7

Wei, M. Y.; de Arquer, F. P. G.; Walters, G.; Yang, Z. Y.; Quan, L. N.; Kim, Y.; Sabatini, R.; Quintero-Bermudez, R.; Gao, L.; Fan, J. Z. et al. Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators. Nat. Energy 2019, 4, 197–205.

8

Mora-Seró, I. Turn defects into strengths. Nat. Energy 2020, 5, 363–364.

9

Sargent, E. H. Colloidal quantum dot solar cells. Nat. Photonics 2012, 6, 133–135.

10

Livache, C.; Martinez, B.; Goubet, N.; Gréboval, C.; Qu, J. L.; Chu, A.; Royer, S.; Ithurria, S.; Silly, M. G.; Dubertret, B. et al. A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat. Commun. 2019, 10, 2125.

11

Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183.

12

Geiregat, P.; Van Thourhout, D.; Hens, Z. A bright future for colloidal quantum dot lasers. NPG Asia Mater. 2019, 11, 41.

13

Liu, J. B.; Zhang, H.; Selopal, G. S.; Sun, S. S.; Zhao, H. G.; Rosei, F. Visible and near-infrared, multiparametric, ultrasensitive nanothermometer based on dual-emission colloidal quantum dots. ACS Photonics 2019, 6, 2479–2486.

14

Gandini, M.; Villa, I.; Beretta, M.; Gotti, C.; Imran, M.; Carulli, F.; Fantuzzi, E.; Sassi, M.; Zaffalon, M.; Brofferio, C. et al. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators. Nat. Nanotechnol. 2020, 15, 462–468.

15

Bahmani Jalali, H.; Karatum, O.; Melikov, R.; Dikbas, U. M.; Sadeghi, S.; Yildiz, E.; Dogru, I. B.; Ozgun Eren, G.; Ergun, C.; Sahin, A. et al. Biocompatible quantum funnels for neural photostimulation. Nano Lett. 2019, 19, 5975–5981.

16

Bahmani Jalali, H.; Mohammadi Aria, M.; Dikbas, U. M.; Sadeghi, S.; Ganesh Kumar, B.; Sahin, M.; Kavakli, I. H.; Ow-Yang, C. W.; Nizamoglu, S. Effective neural photostimulation using indium-based type-II quantum dots. ACS Nano 2018, 12, 8104–8114.

17

Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.

18

McHugh, K. J.; Jing, L. H.; Severt, S. Y.; Cruz, M.; Sarmadi, M.; Jayawardena, H. S. N.; Perkinson, C. F.; Larusson, F.; Rose, S.; Tomasic, S. et al. Biocompatible near-infrared quantum dots delivered to the skin by microneedle patches record vaccination. Sci. Transl. Med. 2019, 11, eaay7162.

19

Zhou, J.; Liu, Y.; Tang, J.; Tang, W. H. Surface ligands engineering of semiconductor quantum dots for chemosensory and biological applications. Mater. Today 2017, 20, 360–376.

20

Dehnel, J.; Barak, Y.; Meir, I.; Budniak, A. K.; Nagvenkar, A. P.; Gamelin, D. R.; Lifshitz, E. Insight into the spin properties in undoped and Mn-doped CdSe/CdS-seeded nanorods by optically detected magnetic resonance. ACS Nano 2020, 14, 13478–13490.

21
Market—Growth, G. Trends, and forecast (2020-2025). Mordor Intelligence, 2019.
22

Kumar, B. G.; Sadeghi, S.; Melikov, R.; Aria, M. M.; Jalali, H. B.; Ow-Yang, C. W.; Nizamoglu, S. Structural control of INP/ZNS core/shell quantum dots enables high-quality white LEDs. Nanotechnology 2018, 29, 345605.

23

Thomas, A.; Nair, P. V.; George Thomas, K. InP quantum dots: An environmentally friendly material with resonance energy transfer requisites. J. Phys. Chem. C 2014, 118, 3838–3845.

24

Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P. Chemistry of InP nanocrystal syntheses. Chem. Mater. 2016, 28, 2491–2506.

25

Chen, B.; Li, D. Y.; Wang, F. InP quantum dots: Synthesis and lighting applications. Small 2020, 16, 2002454.

26

Jang, E.; Kim, Y.; Won, Y. H.; Jang, H.; Choi, S. M. Environmentally friendly InP-based quantum dots for efficient wide color gamut displays. ACS Energy Lett. 2020, 5, 1316–1327.

27

Kim, T. G.; Zherebetskyy, D.; Bekenstein, Y.; Oh, M. H.; Wang, L. W.; Jang, E.; Alivisatos, A. P. Trap passivation in indium-based quantum dots through surface fluorination: Mechanism and applications. ACS Nano 2018, 12, 11529–11540.

28

Healy, M. D.; Laibinis, P. E.; Stupik, P. D.; Barron, A. R. The reaction of indium(III) chloride with tris(trimethylsilyl)phosphine: A novel route to indium phosphide. J. Chem. Soc., Chem. Commun. 1989, 359–360.

29

Wells, R. L.; Aubuchon, S. R.; Kher, S. S.; Lube, M. S.; White, P. S. Synthesis of nanocrystalline indium arsenide and indium phosphide from indium(III) halides and tris(trimethylsilyl)pnicogens. Synthesis, characterization, and decomposition behavior of I3In. cntdot. P(SiMe3)3. Chem. Mater. 1995, 7, 793–800.

30

Guzelian, A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R. Synthesis of size-selected, surface-passivated InP nanocrystals. J. Phys. Chem. 1996, 100, 7212–7219.

31

Micic, O. I.; Sprague, J. R.; Curtis, C. J.; Jones, K. M.; Machol, J. L.; Nozik, A. J.; Giessen, H.; Fluegel, B.; Mohs, G.; Peyghambarian, N. Synthesis and characterization of InP, GaP, and GainP2 quantum dots. J. Phys. Chem. 1995, 99, 7754–7759.

32

Micic, O. I.; Curtis, C. J.; Jones, K. M.; Sprague, J. R.; Nozik, A. J. Synthesis and characterization of InP quantum dots. J. Phys. Chem. 1994, 98, 4966–4969.

33

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

34

Battaglia, D.; Peng, X. G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2, 1027–1030.

35

Li, L.; Reiss, P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc. 2008, 130, 11588–11589.

36

Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

37

Ho, C. H.; Tsai, C. P.; Chung, C. C.; Tsai, C. Y.; Chen, F. R.; Lin, H. J.; Lai, C. H. Shape-controlled growth and shape-dependent cation site occupancy of monodisperse Fe3O4 nanoparticles. Chem. Mater. 2011, 23, 1753–1760.

38

Wang, A. F.; Yan, X. X.; Zhang, M.; Sun, S. B.; Yang, M.; Shen, W.; Pan, X. Q.; Wang, P.; Deng, Z. T. Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process. Chem. Mater. 2016, 28, 8132–8140.

39

Park, J.; Joo, J.; Kwon, S. G.; Jang, Y. J.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem., Int. Ed. 2007, 46, 4630–4660.

40

de Mello Donegá, C.; Liljeroth, P.; Vanmaekelbergh, D. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 2005, 1, 1152–1162.

41

Lucey, D. W.; MacRae, D. J.; Furis, M.; Sahoo, Y.; Cartwright, A. N.; Prasad, P. N. Monodispersed InP quantum dots prepared by colloidal chemistry in a noncoordinating solvent. Chem. Mater. 2005, 17, 3754–3762.

42

van Embden, J.; Chesman, A. S. R.; Jasieniak, J. J. The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 2015, 27, 2246–2285.

43

Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

44

Yang, X. Y.; Zhao, D. W.; Leck, K. S.; Tan, S. T.; Tang, Y. X.; Zhao, J. L.; Demir, H. V.; Sun, X. W. Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes. Adv. Mater. 2012, 24, 4180–4185.

45

Park, J.; Jayaraman, A.; Wang, X. D.; Zhao, J.; Han, H. S. Nanocrystal precursor incorporating separated reaction mechanisms for nucleation and growth to unleash the potential of heat-up synthesis. ACS Nano 2020, 14, 11579–11593.

46

Green, M.; O'Brien, P. The synthesis of III-V semiconductor nanoparticles using indium and gallium diorganophosphides as single-molecular precursors. J. Mater. Chem. 2004, 14, 629–636.

47

Li, C. L.; Ando, M.; Enomoto, H.; Murase, N. Highly luminescent water-soluble InP/ZnS nanocrystals prepared via reactive phase transfer and photochemical processing. J. Phys. Chem. C 2008, 112, 20190–20199.

48

Byun, H. J.; Lee, J. C.; Yang, H. Solvothermal synthesis of InP quantum dots and their enhanced luminescent efficiency by post-synthetic treatments. J. Colloid Interface Sci. 2011, 355, 35–41.

49

Qian, Y. T. Solvothermal synthesis of nanocrystalline III-V semiconductors. Adv. Mater. 1999, 11, 1101–1102.

50

Byun, H. J.; Song, W. S.; Yang, H. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source. Nanotechnology 2011, 22, 235605.

51

Clark, M. D.; Kumar, S. K.; Owen, J. S.; Chan, E. M. Focusing nanocrystal size distributions via production control. Nano Lett. 2011, 11, 1976–1980.

52

Li, Y.; Pu, C. D.; Peng, X. G. Surface activation of colloidal indium phosphide nanocrystals. Nano Res. 2017, 10, 941–958.

53

Ramasamy, P.; Ko, K. J.; Kang, J. W.; Lee, J. S. Two-step “seed-mediated” synthetic approach to colloidal indium phosphide quantum dots with high-purity photo- and electroluminescence. Chem. Mater. 2018, 30, 3643–3647.

54

Beberwyck, B. J.; Surendranath, Y.; Alivisatos, A. P. Cation exchange: A versatile tool for nanomaterials synthesis. J. Phys. Chem. C 2013, 117, 19759–19770.

55

Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664–670.

56

Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009–1012.

57

Beberwyck, B. J.; Alivisatos, A. P. Ion exchange synthesis of III-V nanocrystals. J. Am. Chem. Soc. 2012, 134, 19977–19980.

58

Huang, F.; Bi, C. H.; Guo, R. Q.; Zheng, C.; Ning, J. J.; Tian, J. J. Synthesis of colloidal blue-emitting InP/ZnS core/shell quantum dots with the assistance of copper cations. J. Phys. Chem. Lett. 2019, 10, 6720–6726.

59

De Trizio, L.; Gaspari, R.; Bertoni, G.; Kriegel, I.; Moretti, L.; Scotognella, F.; Maserati, L.; Zhang, Y.; Messina, G. C.; Prato, M. et al. Cu3−xP nanocrystals as a material platform for near-infrared plasmonics and cation exchange reactions. Chem. Mater. 2015, 27, 1120–1128.

60

Koh, S.; Kim, W. D.; Bae, W. K.; Lee, Y. K.; Lee, D. C. Controlling ion-exchange balance and morphology in cation exchange from Cu3−xP nanoplatelets into InP crystals. Chem. Mater. 2019, 31, 1990–2001.

61

Steimle, B. C.; Fenton, J. L.; Schaak, R. E. Rational construction of a scalable heterostructured nanorod megalibrary. Science 2020, 367, 418–424.

62

Shan, X. Y.; Li, B. H.; Ji, B. T. Synthesis of wurtzite In and Ga phosphide quantum dots through cation exchange reactions. Chem. Mater. 2021, 33, 5223–5232.

63

Lesnyak, V.; Gaponik, N.; Eychmüller, A. Colloidal semiconductor nanocrystals: The aqueous approach. Chem. Soc. Rev. 2013, 42, 2905–2929.

64
Rogach, A. L. Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications. Vienna: Springer, 2008.https://doi.org/10.1007/978-3-211-75237-1
65

Yang, H. Q.; Yin, W. Y.; Zhao, H.; Yang, R. L.; Song, Y. Z. A complexant-assisted hydrothermal procedure for growing well-dispersed InP nanocrystals. J. Phys. Chem. Solids 2008, 69, 1017–1022.

66

Wei, S.; Lu, J.; Yu, W. C.; Qian, Y. T. InP nanocrystals via surfactant-aided hydrothermal synthesis. J. Appl. Phys. 2004, 95, 3683–3688.

67

Wei, S.; Lu, J.; Zeng, L.; Yu, W. C.; Qian, Y. T. Hydrothermal synthesis of InP semiconductor nanocrystals. Chem. Lett. 2002, 31, 1034–1035.

68

Liu, Z. P.; Kumbhar, A.; Xu, D.; Zhang, J.; Sun, Z. Y.; Fang, J. Y. Coreduction colloidal synthesis of III-V nanocrystals: The case of InP. Angew. Chem., Int. Ed. 2008, 47, 3540–3542.

69

Jun, K. W.; Khanna, P. K.; Hong, K. B.; Baeg, J. O.; Suh, Y. D. Synthesis of InP nanocrystals from indium chloride and sodium phosphide by solution route. Mater. Chem. Phys. 2006, 96, 494–497.

70

Green, M.; O’Brien, P. A novel metalorganic route for the direct and rapid synthesis of monodispersed quantum dots of indium phosphide. Chem. Commun. 1998, 2459–2460.

71

Gao, S. M.; Lu, J.; Chen, N.; Zhao, Y.; Xie, Y. Aqueous synthesis of III-V semiconductor GaP and InP exhibiting pronounced quantum confinement. Chem. Commun. 2002, 3064–3065.

72

Yan, P.; Xie, Y.; Wang, W. Z.; Liu, F. Y.; Qian, Y. T. A low-temperature route to InP nanocrystals. J. Mater. Chem. 1999, 9, 1831–1833.

73

Virieux, H.; Le Troedec, M.; Cros-Gagneux, A.; Ojo, W. S.; Delpech, F.; Nayral, C.; Martinez, H.; Chaudret, B. InP/ZnS nanocrystals: Coupling NMR and XPS for fine surface and interface description. J. Am. Chem. Soc. 2012, 134, 19701–19708.

74

Cros-Gagneux, A.; Delpech, F.; Nayral, C.; Cornejo, A.; Coppel, Y.; Chaudret, B. Surface chemistry of InP quantum dots: A comprehensive study. J. Am. Chem. Soc. 2010, 132, 18147–18157.

75

Protière, M.; Reiss, P. Amine-induced growth of an In2O3 shell on colloidal InP nanocrystals. Chem. Commun. 2007, 2417–2419.

76

Gary, D. C.; Cossairt, B. M. Role of acid in precursor conversion during InP quantum dot synthesis. Chem. Mater. 2013, 25, 2463–2469.

77

Buffard, A.; Dreyfuss, S.; Nadal, B.; Heuclin, H.; Xu, X. Z.; Patriarche, G.; Mézailles, N.; Dubertret, B. Mechanistic insight and optimization of InP nanocrystals synthesized with aminophosphines. Chem. Mater. 2016, 28, 5925–5934.

78

Brunetti, V.; Chibli, H.; Fiammengo, R.; Galeone, A.; Malvindi, M. A.; Vecchio, G.; Cingolani, R.; Nadeau, J. L.; Pompa, P. P. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: In vitro and in vivo toxicity assessment. Nanoscale 2013, 5, 307–317.

79

Li, L.; Protière, M.; Reiss, P. Economic synthesis of high quality InP nanocrystals using calcium phosphide as the phosphorus precursor. Chem. Mater. 2008, 20, 2621–2623.

80

Li, C. L.; Masanori, A.; Norio, M. Facile preparation of highly luminescent InP nanocrystals by a solvothermal route. Chem. Lett. 2008, 37, 856–857.

81

Tessier, M. D.; De Nolf, K.; Dupont, D.; Sinnaeve, D.; De Roo, J.; Hens, Z. Aminophosphines: A double role in the synthesis of colloidal indium phosphide quantum dots. J. Am. Chem. Soc. 2016, 138, 5923–5929.

82

Song, W. S.; Lee, H. S.; Lee, J. C.; Jang, D. S.; Choi, Y.; Choi, M.; Yang, H. Amine-derived synthetic approach to color-tunable InP/ZnS quantum dots with high fluorescent qualities. J. Nanopart. Res. 2013, 15, 1750.

83

Tessier, M. D.; Dupont, D.; De Nolf, K.; De Roo, J.; Hens, Z. Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum dots. Chem. Mater. 2015, 27, 4893–4898.

84

Mundy, M. E.; Eagle, F. W.; Hughes, K. E.; Gamelin, D. R.; Cossairt, B. M. Synthesis and spectroscopy of emissive, surface-modified, copper-doped indium phosphide nanocrystals. ACS Mater. Lett. 2020, 2, 576–581.

85

Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N. M.; Nadeau, J. L. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation. Nanoscale 2011, 3, 2552–2559.

86

Yamazaki, K.; Tanaka, A.; Hirata, M.; Omura, M.; Makita, Y.; Inoue, N.; Sugio, K.; Sugimachi, K. Long term pulmonary toxicity of indium arsenide and indium phosphide instilled intratracheally in hamsters. J. Occup. Health 2000, 42, 169–178.

87
National Toxicology Program. Toxicology and carcinogenesis studies of indium phosphide (CAS No. 22398–90–7) in F344/N rats and B6C3F1 mice (inhalation studies). Natl. Toxicol. Program Tech. Rep. Ser. 2001, 7–340. (Please note that the volume number information of this literature was not found, and revise, thanks!)
88

Gottschling, B. C.; Maronpot, R. R.; Hailey, J. R.; Peddada, S.; Moomaw, C. R.; Klaunig, J. E.; Nyska, A. The role of oxidative stress in indium phosphide-induced lung carcinogenesis in rats. Toxicol. Sci. 2001, 64, 28–40.

89

Yong, K. T.; Ding, H.; Roy, I.; Law, W. C.; Bergey, E. J.; Maitra, A.; Prasad, P. N. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 2009, 3, 502–510.

90

Bahmani Jalali, H.; Sadeghi, S.; Sahin, M.; Ozturk, H.; Ow-Yang, C. W.; Nizamoglu, S. Colloidal aluminum antimonide quantum dots. Chem. Mater. 2019, 31, 4743–4747.

91

Reiss, P.; Carrière, M.; Lincheneau, C.; Vaure, L.; Tamang, S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 2016, 116, 10731–10819.

92

Adam, S.; Talapin, D. V.; Borchert, H.; Lobo, A.; McGinley, C.; de Castro, A. R. B.; Haase, M.; Weller, H.; Möller, T. The effect of nanocrystal surface structure on the luminescence properties: Photoemission study of HF-etched InP nanocrystals. J. Chem. Phys. 2005, 123, 084706.

93

Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.

94

Fu, H. X.; Zunger, A. InP quantum dots: Electronic structure, surface effects, and the redshifted emission. Phys. Rev. B 1997, 56, 1496–1508.

95

Cihan, A. F.; Kelestemur, Y.; Guzelturk, B.; Yerli, O.; Kurum, U.; Yaglioglu, H. G.; Elmali, A.; Demir, H. V. Attractive versus repulsive excitonic interactions of colloidal quantum dots control blue- to red-shifting (and non-shifting) amplified spontaneous emission. J. Phys. Chem. Lett. 2013, 4, 4146–4152.

96

Kim, S.; Fisher, B.; Eisler, H. J.; Bawendi, M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 2003, 125, 11466–11467.

97

Klimov, V. I.; Ivanov, S. A.; Nanda, J.; Achermann, M.; Bezel, I.; McGuire, J. A.; Piryatinski, A. Single-exciton optical gain in semiconductor nanocrystals. Nature 2007, 447, 441–446.

98

Kelestemur, Y.; Olutas, M.; Delikanli, S.; Guzelturk, B.; Akgul, M. Z.; Demir, H. V. Type-II colloidal quantum wells: CdSe/CdTe core/crown heteronanoplatelets. J. Phys. Chem. C 2015, 119, 2177–2185.

99

Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475.

100

Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412.

101

Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465.

102

Karatum, O.; Eren, G. O.; Melikov, R.; Onal, A.; Ow-Yang, C. W.; Sahin, M.; Nizamoglu, S. Quantum dot and electron acceptor nano-heterojunction for photo-induced capacitive charge-transfer. Sci. Rep. 2021, 11, 2460.

103

Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 2004, 22, 93–97.

104

Ivanov, S. A.; Piryatinski, A.; Nanda, J.; Tretiak, S.; Zavadil, K. R.; Wallace, W. O.; Werder, D.; Klimov, V. I. Type-II core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 2007, 129, 11708–11719.

105

Xie, R. G.; Battaglia, D.; Peng, X. G. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 2007, 129, 15432–15433.

106

Xu, S.; Ziegler, J.; Nann, T. Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J. Mater. Chem. 2008, 18, 2653–2656.

107

Li, Y.; Hou, X. Q.; Dai, X. L.; Yao, Z. L.; Lv, L. L.; Jin, Y. Z.; Peng, X. G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448–6452.

108

Haubold, S.; Haase, M.; Kornowski, A.; Weller, H. Strongly luminescent InP/ZnS core-shell nanoparticles. ChemPhysChem 2001, 2, 331–334.

109

Xu, S.; Klama, F.; Ueckermann, H.; Hoogewerff, J.; Clayden, N.; Nann, T. Optical and surface characterisation of capping ligands in the preparation of InP/ZnS quantum dots. Sci. Adv. Mater. 2009, 1, 125–137.

110

Bahmani Jalali, H.; Melikov, R.; Sadeghi, S.; Nizamoglu, S. Excitonic energy transfer within InP/ZnS quantum dot Langmuir–Blodgett assemblies. J. Phys. Chem. C 2018, 122, 11616–11622.

111

Xu, S.; Kumar, S.; Nann, T. Rapid synthesis of high-quality InP nanocrystals. J. Am. Chem. Soc. 2006, 128, 1054–1055.

112

Ziegler, J.; Merkulov, A.; Grabolle, M.; Resch-Genger, U.; Nann, T. High-quality ZnS shells for CdSe nanoparticles: Rapid microwave synthesis. Langmuir 2007, 23, 7751–7759.

113

Karatum, O.; Jalali, H. B.; Sadeghi, S.; Melikov, R.; Srivastava, S. B.; Nizamoglu, S. Light-emitting devices based on type-II InP/ZnO quantum dots. ACS Photonics 2019, 6, 939–946.

114

Sadeghi, S.; Bahmani Jalali, H.; Melikov, R.; Ganesh Kumar, B.; Mohammadi Aria, M.; Ow-Yang, C. W.; Nizamoglu, S. Stokes-shift-engineered indium phosphide quantum dots for efficient luminescent solar concentrators. ACS Appl. Mater. Interfaces 2018, 10, 12975–12982.

115

Shen, W.; Tang, H. Y.; Yang, X. L.; Cao, Z. L.; Cheng, T.; Wang, X. Y.; Tan, Z. A.; You, J. B.; Deng, Z. T. Synthesis of highly fluorescent InP/ZnS small-core/thick-shell tetrahedral-shaped quantum dots for blue light-emitting diodes. J. Mater. Chem. C 2017, 5, 8243–8249.

116

Shirazi, R.; Kovacs, A.; Corell, D. D.; Gritti, C.; Thorseth, A.; Dam-Hansen, C.; Petersen, P. M.; Kardynal, B. Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals. J. Lumin. 2014, 145, 936–939.

117

Kim, M. R.; Chung, J. H.; Lee, M.; Lee, S.; Jang, D. J. Fabrication, spectroscopy, and dynamics of highly luminescent core-shell InP@ ZnSe quantum dots. J. Colloid Interface Sci. 2010, 350, 5–9.

118

Mushonga, P.; Ouma, I. L. A.; Madiehe, A. M.; Meyer, M.; Dejene, F. B.; Onani, M. O. Synthesis, optical and morphological characterization of doped InP/ZnSe NCs. Phys. B: Condens. Matter 2014, 439, 189–192.

119

Lee, W.; Lee, C.; Kim, B.; Choi, Y.; Chae, H. Synthesis of blue-emissive InP/GaP/ZnS quantum dots via controlling the reaction kinetics of shell growth and length of capping ligands. Nanomaterials 2020, 10, 2171.

120

Park, J. P.; Lee, J. J.; Kim, S. W. Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process. Sci. Rep. 2016, 6, 30094.

121

Liu, A.; Xing, X.; Cai, H.; Zeng, Y.; Guo, J.; Li, H.; Yan, W.; Zhou, F.; Song, J.; Qu, J. Cd‐free InP/ZnSeS quantum dots for ultrahigh‐resolution imaging of stimulated emission depletion. Journal of Biophotonics 2021, 14, e202100230.

122

Zhang, J.; Wang, J.; Yan, T.; Peng, Y. A.; Xu, D. J.; Deng, D. W. InP/ZnSe/ZnS quantum dots with strong dual emissions: Visible excitonic emission and near-infrared surface defect emission and their application in in vitro and in vivo bioimaging. J. Mater. Chem. B 2017, 5, 8152–8160.

123

Lim, J.; Bae, W. K.; Lee, D.; Nam, M. K.; Jung, J.; Lee, C.; Char, K.; Lee, S. Inp@znses, core@composition gradient shell quantum dots with enhanced stability. Chem. Mater. 2011, 23, 4459–4463.

124

Kim, Y.; Ippen, C.; Greco, T.; Lee, J.; Oh, M. S.; Han, C. J.; Wedel, A.; Kim, J. Increased shell thickness in indium phosphide multishell quantum dots leading to efficiency and stability enhancement in light-emitting diodes. Opt. Mater. Express 2014, 4, 1436–1443.

125

Ramasamy, P.; Kim, N.; Kang, Y. S.; Ramirez, O.; Lee, J. S. Tunable, bright, and narrow-band luminescence from colloidal indium phosphide quantum dots. Chem. Mater. 2017, 29, 6893–6899.

126

Kim, S.; Kim, T.; Kang, M.; Kwak, S. K.; Yoo, T. W.; Park, L. S.; Yang, I.; Hwang, S.; Lee, J. E.; Kim, S. K. et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J. Am. Chem. Soc. 2012, 134, 3804–3809.

127

Ippen, C.; Greco, T.; Wedel, A. InP/ZnSe/ZnS: A novel multishell system for InP quantum dots for improved luminescence efficiency and its application in a light-emitting device. J. Inf. Display 2012, 13, 91–95.

128

Chandrasekaran, V.; Tessier, M. D.; Dupont, D.; Geiregat, P.; Hens, Z.; Brainis, E. Nearly blinking-free, high-purity single-photon emission by colloidal InP/ZnSe quantum dots. Nano Lett. 2017, 17, 6104–6109.

129

Reid, K. R.; McBride, J. R.; Freymeyer, N. J.; Thal, L. B.; Rosenthal, S. J. Chemical structure, ensemble and single-particle spectroscopy of thick-shell InP-ZnSe quantum dots. Nano Lett. 2018, 18, 709–716.

130

Ziegler, J.; Xu, S.; Kucur, E.; Meister, F.; Batentschuk, M.; Gindele, F.; Nann, T. Silica-coated InP/ZnS nanocrystals as converter material in white LEDs. Adv. Mater. 2008, 20, 4068–4073.

131

Mutlugun, E.; Hernandez-Martinez, P. L.; Eroglu, C.; Coskun, Y.; Erdem, T.; Sharma, V. K.; Unal, E.; Panda, S. K.; Hickey, S. G.; Gaponik, N. et al. Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots. Nano Lett. 2012, 12, 3986–3993.

132

Gao, S.; Zhang, C. F.; Liu, Y. J.; Su, H. P.; Wei, L.; Huang, T.; Dellas, N.; Shang, S. Z.; Mohney, S. E.; Wang, J. K. et al. Lasing from colloidal InP/ZnS quantum dots. Opt. Express 2011, 19, 5528–5535.

133

Macdonald, T. J.; Tune, D. D.; Dewi, M. R.; Bear, J. C.; McNaughter, P. D.; Mayes, A. G.; Skinner, W. M.; Parkin, I. P.; Shapter, J. G.; Nann, T. SWCNT photocathodes sensitised with InP/ZnS core-shell nanocrystals. J. Mater. Chem. C 2016, 4, 3379–3384.

134

Yu, S.; Fan, X. B.; Wang, X.; Li, J. G.; Zhang, Q.; Xia, A. D.; Wei, S. Q.; Wu, L. Z.; Zhou, Y.; Patzke, G. R. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat. Commun. 2018, 9, 4009.

135

Lim, M.; Lee, W.; Bang, G.; Lee, W. J.; Park, Y.; Kwon, Y.; Jung, Y.; Kim, S.; Bang, J. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation. Nanoscale 2019, 11, 10463–10471.

136

Wu, K. F.; Song, N. H.; Liu, Z.; Zhu, H. M.; Rodríguez-Córdoba, W.; Lian, T. Q. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes. J. Phys. Chem. A 2013, 117, 7561–7570.

137

Nguyen, T. L.; Michael, M.; Mulvaney, P. Synthesis of highly crystalline CdSe@ZnO nanocrystals via monolayer-by-monolayer epitaxial shell deposition. Chem. Mater. 2014, 26, 4274–4279.

138

Liu, J. F.; Bei, Y. Y.; Wu, H. P.; Shen, D.; Gong, J. Z.; Li, X. G.; Wang, Y. W.; Jiang, N. P.; Jiang, J. Z. Synthesis of relatively monodisperse Zno nanocrystals from a precursor zinc 2,4-pentanedionate. Mater. Lett. 2007, 61, 2837–2840.

139

Sadeghi, S.; Bahmani Jalali, H.; Srivastava, S. B.; Melikov, R.; Baylam, I.; Sennaroglu, A.; Nizamoglu, S. High-performance, large-area, and ecofriendly luminescent solar concentrators using copper-doped InP quantum dots. iScience 2020, 23, 101272.

140

Xie, R. G.; Peng, X. G. Synthesis of cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J. Am. Chem. Soc. 2009, 131, 10645–10651.

141

Erickson, C. S.; Bradshaw, L. R.; McDowall, S.; Gilbertson, J. D.; Gamelin, D. R.; Patrick, D. L. Zero-reabsorption doped-nanocrystal luminescent solar concentrators. ACS Nano 2014, 8, 3461–3467.

142

Beaulac, R.; Archer, P. I.; Gamelin, D. R. Luminescence in colloidal Mn2+-doped semiconductor nanocrystals. J. Solid State Chem. 2008, 181, 1582–1589.

143
Ronda, C. Luminescence: From Theory to Applications. Weinheim: Wiley-VCH, 2008.https://doi.org/10.1002/9783527621064
144

Zhao, H. Y.; Li, X.; Cai, M. K.; Liu, C.; You, Y. M.; Wang, R.; Channa, A. I.; Lin, F.; Huo, D.; Xu, G. F. et al. Role of copper doping in heavy metal-free InP/ZnSe core/shell quantum dots for highly efficient and stable photoelectrochemical cell. Adv. Energy Mater. 2021, 11, 2101230.

145

Lim, Y. T.; Kim, S.; Nakayama, A.; Stott, N. E.; Bawendi, M. G.; Frangioni, J. V. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imaging 2003, 2, 50–64.

146

Nam, J.; Won, N.; Bang, J.; Jin, H.; Park, J.; Jung, S.; Jung, S.; Park, Y.; Kim, S. Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliv. Rev. 2013, 65, 622–648.

147

Koh, S.; Eom, T.; Kim, W. D.; Lee, K.; Lee, D.; Lee, Y. K.; Kim, H.; Bae, W. K.; Lee, D. C. Zinc-phosphorus complex working as an atomic valve for colloidal growth of monodisperse indium phosphide quantum dots. Chem. Mater. 2017, 29, 6346–6355.

148

Thuy, U. T. D.; Reiss, P.; Liem, N. Q. Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots. Appl. Phys. Lett. 2010, 97, 193104.

149

Mordvinova, N. E.; Vinokurov, A. A.; Lebedev, O. I.; Kuznetsova, T. A.; Dorofeev, S. G. Addition of Zn during the phosphine-based synthesis of indium phospide quantum dots: Doping and surface passivation. Beilstein J. Nanotechnol. 2015, 6, 1237–1246.

150

Xi, L. F.; Cho, D. Y.; Besmehn, A.; Duchamp, M.; Grützmacher, D.; Lam, Y. M.; Kardynał, B. E. Effect of zinc incorporation on the performance of red light emitting InP core nanocrystals. Inorg. Chem. 2016, 55, 8381–8386.

151

Pietra, F.; De Trizio, L.; Hoekstra, A. W.; Renaud, N.; Prato, M.; Grozema, F. C.; Baesjou, P. J.; Koole, R.; Manna, L.; Houtepen, A. J. Tuning the lattice parameter of InxZnyP for highly luminescent lattice-matched core/shell quantum dots. ACS Nano 2016, 10, 4754–4762.

152

Taylor, D. A.; Teku, J. A.; Cho, S.; Chae, W. S.; Jeong, S. J.; Lee, J. S. Importance of surface functionalization and purification for narrow FWHM and bright green-emitting InP core-multishell quantum dots via a two-step growth process. Chem. Mater. 2021, 33, 4399–4407.

153

Sadekar, H. K.; Ghule, A. V.; Sharma, R. Bandgap engineering by substitution of S by Se in nanostructured ZnS1−xSex thin films grown by soft chemical route for nontoxic optoelectronic device applications. J. Alloys Compd. 2011, 509, 5525–5531.

154

Kim, K.; Lee, H.; Ahn, J.; Jeong, S. Highly luminescing multi-shell semiconductor nanocrystals InP/ZnSe/ZnS. Appl. Phys. Lett. 2012, 101, 073107.

155

Yeom, J. E.; Shin, D. H.; Lampande, R.; Jung, Y. H.; Mude, N. N.; Park, J. H.; Kwon, J. H. Good charge balanced inverted red InP/ZnSe/ZnS-quantum dot light-emitting diode with new high mobility and deep homo level hole transport layer. ACS Energy Lett. 2020, 5, 3868–3875.

156

Pietra, F.; Kirkwood, N.; De Trizio, L.; Hoekstra, A. W.; Kleibergen, L.; Renaud, N.; Koole, R.; Baesjou, P.; Manna, L.; Houtepen, A. J. Ga for Zn cation exchange allows for highly luminescent and photostable InZnP-based quantum dots. Chem. Mater. 2017, 29, 5192–5199.

157

Ning, Z. J.; Ren, Y.; Hoogland, S.; Voznyy, O.; Levina, L.; Stadler, P.; Lan, X. Z.; Zhitomirsky, D.; Sargent, E. H. All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Adv. Mater. 2012, 24, 6295–6299.

158

Ning, Z. J.; Voznyy, O.; Pan, J.; Hoogland, S.; Adinolfi, V.; Xu, J. X.; Li, M.; Kirmani, A. R.; Sun, J. P.; Minor, J. et al. Air-stable n-type colloidal quantum dot solids. Nat. Mater. 2014, 13, 822–828.

159

Woo, J. Y.; Ko, J. H.; Song, J. H.; Kim, K.; Choi, H.; Kim, Y. H.; Lee, D. C.; Jeong, S. Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe (100). J. Am. Chem. Soc. 2014, 136, 8883–8886.

160

Scheele, M.; Engel, J. H.; Ferry, V. E.; Hanifi, D.; Liu, Y.; Alivisatos, A. P. Nonmonotonic size dependence in the hole mobility of methoxide-stabilized PbSe quantum dot solids. ACS Nano 2013, 7, 6774–6781.

161

Oh, S. J.; Berry, N. E.; Choi, J. H.; Gaulding, E. A.; Lin, H. F.; Paik, T.; Diroll, B. T.; Muramoto, S.; Murray, C. B.; Kagan, C. R. Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. Nano Lett. 2014, 14, 1559–1566.

162

Choi, J. H.; Wang, H.; Oh, S. J.; Paik, T.; Sung, P.; Sung, J.; Ye, X. C.; Zhao, T. S.; Diroll, B. T.; Murray, C. B. et al. Exploiting the colloidal nanocrystal library to construct electronic devices. Science 2016, 352, 205–208.

163

Chuang, C. H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

164

Clifford, J. P.; Konstantatos, G.; Johnston, K. W.; Hoogland, S.; Levina, L.; Sargent, E. H. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat. Nanotechnol 2009, 4, 40–44.

165

Hetsch, F.; Zhao, N.; Kershaw, S. V.; Rogach, A. L. Quantum dot field effect transistors. Mater. Today 2013, 16, 312–325.

166

Liu, Y.; Tolentino, J.; Gibbs, M.; Ihly, R.; Perkins, C. L.; Liu, Y.; Crawford, N.; Hemminger, J. C.; Law, M. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2·v−1·s−1. Nano Lett. 2013, 13, 1578–1587.

167

Peng, X. G.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 1997, 119, 7019–7029.

168

Bronstein, N. D.; Li, L. F.; Xu, L.; Yao, Y.; Ferry, V. E.; Alivisatos, A. P.; Nuzzo, R. G. Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells. ACS Nano 2014, 8, 44–53.

169

Jang, E.; Jun, S.; Jang, H.; Lim, J.; Kim, B.; Kim, Y. White-light-emitting diodes with quantum dot color converters for display backlights. Adv. Mater. 2010, 22, 3076–3080.

170

Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803.

171

Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

172

Mićić, O. I.; Sprague, J.; Lu, Z. H.; Nozik, A. J. Highly efficient band-edge emission from InP quantum dots. Appl. Phys. Lett. 1996, 68, 3150–3152.

173

Talapin, D. V.; Gaponik, N.; Borchert, H.; Rogach, A. L.; Haase, M.; Weller, H. Etching of colloidal InP nanocrystals with fluorides: Photochemical nature of the process resulting in high photoluminescence efficiency. J. Phys. Chem. B 2002, 106, 12659–12663.

174

Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 2001, 1, 207–211.

175

Dubois, F.; Mahler, B.; Dubertret, B.; Doris, E.; Mioskowski, C. A versatile strategy for quantum dot ligand exchange. J. Am. Chem. Soc. 2007, 129, 482–483.

176

Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

177

Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.

178

Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759–1762.

179

Pellegrino, T.; Manna, L.; Kudera, S.; Liedl, T.; Koktysh, D.; Rogach, A. L.; Keller, S.; Rädler, J.; Natile, G.; Parak, W. J. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett. 2004, 4, 703–707.

180

Doty, R. C.; Tshikhudo, T. R.; Brust, M.; Fernig, D. G. Extremely stable water-soluble Ag nanoparticles. Chem. Mater. 2005, 17, 4630–4635.

181

Susumu, K.; Uyeda, H. T.; Medintz, I. L.; Pons, T.; Delehanty, J. B.; Mattoussi, H. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J. Am. Chem. Soc. 2007, 129, 13987–13996.

182

Roullier, V.; Clarke, S.; You, C. J.; Pinaud, F.; Gouzer, G.; Schaible, D.; Marchi-Artzner, V.; Piehler, J.; Dahan, M. High-affinity labeling and tracking of individual histidine-tagged proteins in live cells using Ni2+ tris-nitrilotriacetic acid quantum dot conjugates. Nano Lett. 2009, 9, 1228–1234.

183

Lévy, R.; Thanh, N. T. K.; Doty, R. C.; Hussain, I.; Nichols, R. J.; Schiffrin, D. J.; Brust, M.; Fernig, D. G. Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J. Am. Chem. Soc. 2004, 126, 10076–10084.

184

Reinhold, H.; Mikolajczak, U.; Brand, I.; Dosche, C.; Borchert, H.; Parisi, J. r.; Scheunemann, D. Shorter is not always better: Analysis of a ligand exchange procedure for CuInS2 nanoparticles as the photovoltaic absorber material. J. Phys. Chem. C 2020, 124, 19922–19928.

185

Kim, S.; Bawendi, M. G. Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J. Am. Chem. Soc. 2003, 125, 14652–14653.

186
Zuzuarregui, A.; Morant-Miñana, M. C. Research Perspectives on Functional Micro- and Nanoscale Coatings. Hershey: IGI Global, 2016.https://doi.org/10.4018/978-1-5225-0066-7
187

Tamang, S.; Beaune, G.; Texier, I.; Reiss, P. Aqueous phase transfer of InP/ZnS nanocrystals conserving fluorescence and high colloidal stability. ACS Nano 2011, 5, 9392–9402.

188

Wang, R. L.; Shang, Y. Q.; Kanjanaboos, P.; Zhou, W. J.; Ning, Z. J.; Sargent, E. H. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ. Sci. 2016, 9, 1130–1143.

189

Chen, K. Q.; Zhong, Q. H.; Chen, W.; Sang, B. H.; Wang, Y. W.; Yang, T. Q.; Liu, Y. L.; Zhang, Y. P.; Zhang, H. Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1900991.

190
Tamang, S.; Beaune, G.; Poillot, C.; De Waard, M.; Texier-Nogues, I.; Reiss, P. Compact and highly stable quantum dots through optimized aqueous phase transfer. In Proceedings of SPIE 7909, Colloidal Quantum Dots/Nanocrystals for Biomedical Applications VI, San Francisco, CA, USA, 2011, pp 79091B.https://doi.org/10.1117/12.873805
191

Srivastava, V.; Kamysbayev, V.; Hong, L.; Dunietz, E.; Klie, R. F.; Talapin, D. V. Colloidal chemistry in molten salts: Synthesis of luminescent In1−xGaxP and In1−xGaxAs quantum dots. J. Am. Chem. Soc. 2018, 140, 12144–12151.

192

Saeboe, A. M.; Nikiforov, A. Y.; Toufanian, R.; Kays, J. C.; Chern, M.; Casas, J. P.; Han, K.; Piryatinski, A.; Jones, D.; Dennis, A. M. Extending the near-infrared emission range of indium phosphide quantum dots for multiplexed in vivo imaging. Nano Lett. 2021, 21, 3271–3279.

193

Liu, P.; Lou, Y. J.; Ding, S. H.; Zhang, W. D.; Wu, Z. H.; Yang, H. C.; Xu, B.; Wang, K.; Sun, X. W. Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications. Adv. Funct. Mater. 2021, 31, 2008453.

194

Han, M. G.; Lee, Y.; Kwon, H. I.; Lee, H.; Kim, T.; Won, Y. H.; Jang, E. InP-based quantum dot light-emitting diode with a blended emissive layer. ACS Energy Lett. 2021, 6, 1577–1585.

195

Zhang, W. D.; Ding, S. H.; Zhuang, W. D.; Wu, D.; Liu, P.; Qu, X. W.; Liu, H. C.; Yang, H. C.; Wu, Z. H.; Wang, K. et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 2020, 30, 2005303.

196

Iwasaki, Y.; Motomura, G.; Ogura, K.; Tsuzuki, T. Efficient green InP quantum dot light-emitting diodes using suitable organic electron-transporting materials. Appl. Phys. Lett. 2020, 117, 111104.

197

Zhang, H.; Su, Q.; Chen, S. M. Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission. Nat. Commun. 2020, 11, 2826.

198

Wu, Z. H.; Liu, P.; Zhang, W. D.; Wang, K.; Sun, X. W. Development of InP quantum dot-based light-emitting diodes. ACS Energy Lett. 2020, 5, 1095–1106.

199

Kim, K.; Han, C. S.; Jeong, S. Design and synthesis of photostable multi-shell Cd-free nanocrystalquantum dots for LED applications. J. Mater. Chem. 2012, 22, 21370–21372.

200

Shu, Y. F.; Lin, X.; Qin, H. Y.; Hu, Z.; Jin, Y. Z.; Peng, X. G. Quantum dots for display applications. Angew. Chem., Int. Ed. 2020, 59, 22312–22323.

201

Zhang, Z. L.; Liu, D.; Li, D. Z.; Huang, K. K.; Zhang, Y.; Shi, Z.; Xie, R. G.; Han, M. Y.; Wang, Y.; Yang, W. S. Dual emissive Cu: Inp/zns/InP/ZnS nanocrystals: Single-source “greener” emitters with flexibly tunable emission from visible to near-infrared and their application in white light-emitting diodes. Chem. Mater. 2015, 27, 1405–1411.

202

Eren, G. O.; Sadeghi, S.; Bahmani Jalali, H.; Ritter, M.; Han, M.; Baylam, I.; Melikov, R.; Onal, A.; Oz, F.; Sahin, M. et al. Cadmium-free and efficient type-II InP/ZnO/ZnS quantum dots and their application for LEDs. ACS Appl. Mater. Interfaces 2021, 13, 32022–32030.

203

Franke, D.; Harris, D. K.; Xie, L. S.; Jensen, K. F.; Bawendi, M. G. The unexpected influence of precursor conversion rate in the synthesis of III-V quantum dots. Angew. Chem. 2015, 127, 14507–14511.

204

Gary, D. C.; Terban, M. W.; Billinge, S. J. L.; Cossairt, B. M. Two-step nucleation and growth of InP quantum dots via magic-sized cluster intermediates. Chem. Mater. 2015, 27, 1432–1441.

205

Janke, E. M.; Williams, N. E.; She, C. X.; Zherebetskyy, D.; Hudson, M. H.; Wang, L. L.; Gosztola, D. J.; Schaller, R. D.; Lee, B.; Sun, C. J. et al. Origin of broad emission spectra in InP quantum dots: Contributions from structural and electronic disorder. J. Am. Chem. Soc. 2018, 140, 15791–15803.

206

Chao, W. C.; Chiang, T. H.; Liu, Y. C.; Huang, Z. X.; Liao, C. C.; Chu, C. H.; Wang, C. H.; Tseng, H. W.; Hung, W. Y.; Chou, P. T. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun. Mater. 2021, 2, 96.

207

Zhang, H.; Ma, X. Y.; Lin, Q. L.; Zeng, Z. P.; Wang, H. Z.; Li, L. S.; Shen, H. B.; Jia, Y.; Du, Z. L. High-brightness blue InP quantum dot-based electroluminescent devices: The role of shell thickness. J. Phys. Chem. Lett. 2020, 11, 960–967.

208

Mićić, O. I.; Jones, K. M.; Cahill, A.; Nozik, A. J. Optical, electronic, and structural properties of uncoupled and close-packed arrays of InP quantum dots. J. Phys. Chem. B 1998, 102, 9791–9796.

209

Mićić, O. I.; Smith, B. B.; Nozik, A. J. Core-shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: Experiment and theory. J. Phys. Chem. B 2000, 104, 12149–12156.

210

Meinardi, F.; Bruni, F.; Brovelli, S. Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mater. 2017, 2, 17072.

211

Ren, S.; Shou, C.; Jin, S.; Chen, G.; Han, S.; Chen, Z.; Chen, X.; Yang, S.; Guo, Y.; Tu, C.-C. Silicon quantum dot luminescent solar concentrators and downshifters with antireflection coatings for enhancing perovskite solar cell performance. ACS Photonics 2021, 8, 2392–2399.

212

Meinardi, F.; Ehrenberg, S.; Dhamo, L.; Carulli, F.; Mauri, M.; Bruni, F.; Simonutti, R.; Kortshagen, U.; Brovelli, S. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nat. Photonics 2017, 11, 177–185.

213

Wu, K. F.; Li, H. B.; Klimov, V. I. Tandem luminescent solar concentrators based on engineered quantum dots. Nat. Photonics 2018, 12, 105–110.

214

Bahmani Jalali, H.; Sadeghi, S.; Baylam, I.; Han, M.; Ow-Yang, C. W.; Sennaroglu, A.; Nizamoglu, S. Exciton recycling via InP quantum dot funnels for luminescent solar concentrators. Nano Res. 2021, 14, 1488–1494.

215

Eren, G. O.; Sadeghi, S.; Shahzad, M.; Nizamoglu, S. Protocol on synthesis and characterization of copper-doped InP/ZnSe quantum dots as ecofriendly luminescent solar concentrators with high performance and large area. STAR protocols 2021, 2, 100664.

216

Wang, B. L.; Liu, H. H.; Zhang, B. J.; Han, Y. M.; Shen, C. H.; Lin, Q. K.; Chen, H. Development of antibacterial and high light transmittance bulk materials: Incorporation and sustained release of hydrophobic or hydrophilic antibiotics. Colloids Surf. B: Biointerfaces 2016, 141, 483–490.

217

Sackmann, E. K.; Fulton, A. L.; Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature 2014, 507, 181–189.

218

Sadeghi, S.; Mutcu, S. E.; Srivastava, S. B.; Aydindogan, G.; Caynak, S.; Karslı, K.; Melikov, R.; Nizamoglu, S. High quality quantum dots polymeric films as color converters for smart phone display technology. Mater. Res. Express 2018, 6, 035015.

219

Sadeghi, S.; Abkenar, S. K.; Ow-Yang, C. W.; Nizamoglu, S. Efficient white LEDs using liquid-state magic-sized CdSe quantum dots. Sci. Rep. 2019, 9, 10061.

220

Meinardi, F.; Colombo, A.; Velizhanin, K. A.; Simonutti, R.; Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V. I.; Brovelli, S. Large-area luminescent solar concentrators based on “stokes-shift-engineered” nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 2006, 100, 074510.

221

Hanna, M. C.; Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 2006, 100, 074510.

222

Li, W. J.; Zhong, X. H. Capping ligand-induced self-assembly for quantum dot sensitized solar cells. J. Phys. Chem. Lett. 2015, 6, 796–806.

223

Yang, Z. S.; Chen, C. Y.; Roy, P.; Chang, H. T. Quantum dot-sensitized solar cells incorporating nanomaterials. Chem. Commun. 2011, 47, 9561–9571.

224

Li, W. J.; Zhong, X. H. Pre-synthesized quantum dot deposition approach to obtain high efficient quantum dot solar cells. Acta Phys. Sin. 2015, 64, 038806.

225

Zaban, A.; Mićić, O. I.; Gregg, B. A.; Nozik, A. J. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 1998, 14, 3153–3156.

226

Yang, S. L.; Zhao, P. X.; Zhao, X. C.; Qu, L. T.; Lai, X. C. InP and Sn: InP based quantum dot sensitized solar cells. J. Mater. Chem. A 2015, 3, 21922–21929.

227

Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057–1060.

228

Mårtensson, T.; Carlberg, P.; Borgström, M.; Montelius, L.; Seifert, W.; Samuelson, L. Nanowire arrays defined by nanoimprint lithography. Nano Lett. 2004, 4, 699–702.

229

Altıntas, Y.; Talpur, M. Y.; Mutlugün, E. Efficient forster resonance energy transfer donors of In (Zn)P/ZnS quantum dots. J. Phys. Chem. C 2017, 121, 3034–3043.

230

Shi, K. X.; Li, J. H.; Xiao, Y. C.; Guo, L.; Chu, X. Y.; Zhai, Y. J.; Zhang, B. L.; Lu, D. X.; Rosei, F. High-response, ultrafast-speed, and self-powered photodetection achieved in InP@ZnS-MoS2 phototransistors with interdigitated Pt electrodes. ACS Appl. Mater. Interfaces 2020, 12, 31382–31391.

231

Förster, T. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 1948, 437, 55–75.

232

Zhu, S. S.; Wang, D. W. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 2017, 7, 1700841.

233

Chakraborty, I. N.; Roy, S.; Devatha, G.; Rao, A.; Pillai, P. P. InP/ZnS quantum dots as efficient visible-light photocatalysts for redox and carbon-carbon coupling reactions. Chem. Mater. 2019, 31, 2258–2262.

234

Bang, J.; Das, S.; Yu, E.-J.; Kim, K.; Lim, H.; Kim, S.; Hong, J. W. Controlled photoinduced electron transfer from InP/ZnS quantum dots through Cu doping: A new prototype for the visible-light photocatalytic hydrogen evolution reaction. Nano Lett. 2020, 20, 6263–6271.

235

Yu, S.; Xie, Z. H.; Ran, M. X.; Wu, F.; Zhong, Y. Q.; Dan, M.; Zhou, Y. Zinc ions modified InP quantum dots for enhanced photocatalytic hydrogen evolution from hydrogen sulfide. J. Colloid Interface Sci. 2020, 573, 71–77.

236

Nann, T.; Ibrahim, S. K.; Woi, P. M.; Xu, S.; Ziegler, J.; Pickett, C. J. Water splitting by visible light: A nanophotocathode for hydrogen production. Angew. Chem., Int. Ed. 2010, 49, 1574–1577.

237

Bharali, D. J.; Lucey, D. W.; Jayakumar, H.; Pudavar, H. E.; Prasad, P. N. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J. Am. Chem. Soc. 2005, 127, 11364–11371.

238

Han, M.; Yildiz, E.; Kaleli, H. N.; Karaz, S.; Eren, G. O.; Dogru‐Yuksel, I. B.; Senses, E.; Şahin, A.; Nizamoglu, S. Tissue‐like optoelectronic neural interface enabled by pedot: PSS hydrogel for cardiac and neural stimulation. Adv. Healthcare Mater. 2021, 2102160.

239

Han, M.; Srivastava, S. B.; Yildiz, E.; Melikov, R.; Surme, S.; Dogru-Yuksel, I. B.; Kavakli, I. H.; Sahin, A.; Nizamoglu, S. Organic photovoltaic pseudocapacitors for neurostimulation. ACS Appl. Mater. Interfaces 2020, 12, 42997–43008.

240

Zhang, M. L.; Tang, Z. J.; Liu, X. L. Van der Spiegel, J. Electronic neural interfaces. Nat. Electron. 2020, 3, 191–200.

241

Pappas, T. C.; Wickramanyake, W. M. S.; Jan, E.; Motamedi, M.; Brodwick, M.; Kotov, N. A. Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons. Nano Lett. 2007, 7, 513–519.

242

Efros, A. L.; Delehanty, J. B.; Huston, A. L.; Medintz, I. L.; Barbic, M.; Harris, T. D. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat. Nanotechnol. 2018, 13, 278–288.

243

Han, M.; Jalali, H. B.; Yildiz, E.; Qureshi, M. H.; Şahin, A.; Nizamoglu, S. Photovoltaic neurointerface based on aluminum antimonide nanocrystals. Commun. Mater. 2021, 2, 19.

244

Lugo, K.; Miao, X. Y.; Rieke, F.; Lin, L. Y. Remote switching of cellular activity and cell signaling using light in conjunction with quantum dots. Biomed. Opt. Express 2012, 3, 447–454.

245

Molokanova, E.; Bartel, J.; Zhao, W.; Naasani, I.; Ignatius, M.; Treadway, J.; Savtchenko, A. Quantum dots move beyond fluorescence imaging the unique properties of quantum dots allow them to be optimized for voltage sensing and for light-controlled electrical activation of cells. Biophotonics Int 2008, 15, 26.

246

Srivastava, S. B.; Melikov, R.; Yildiz, E.; Han, M.; Sahin, A.; Nizamoglu, S. Efficient photocapacitors via ternary hybrid photovoltaic optimization for photostimulation of neurons. Biomed. Opt. Express 2020, 11, 5237–5248.

247

Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11–18.

248

Kesim, C.; Han, M.; Yildiz, E.; Jalali, H. B.; Qureshi, M. H.; Hasanreisoglu, M.; Nizamoglu, S.; Sahin, A. Biocompatibility and neural stimulation capacity of aluminum antimonide nanocrystals biointerfaces for use in artificial vision. Invest. Ophthalmol. Vis. Sci. 2021, 62, 3217–3217.

249

Karatum, O.; Aria, M. M.; Eren, G. O.; Yildiz, E.; Melikov, R.; Srivastava, S. B.; Surme, S.; Dogru, I. B.; Bahmani Jalali, H.; Ulgut, B. et al. Nanoengineering InP quantum dot-based photoactive biointerfaces for optical control of neurons. Front. Neurosci. 2021, 724.

250

Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Two-dimensional colloidal nanocrystals. Chem. Rev. 2016, 116, 10934–10982.

251

Giovanella, U.; Pasini, M.; Lorenzon, M.; Galeotti, F.; Lucchi, C.; Meinardi, F.; Luzzati, S.; Dubertret, B.; Brovelli, S. Efficient solution-processed nanoplatelet-based light-emitting diodes with high operational stability in air. Nano Lett. 2018, 18, 3441–3448.

252

Xiao, P.; Huang, J. H.; Yan, D.; Luo, D. X.; Yuan, J.; Liu, B. Q.; Liang, D. Emergence of nanoplatelet light-emitting diodes. Materials 2018, 11, 1376.

253

Vitukhnovsky, A. G.; Lebedev, V. S.; Selyukov, A. S.; Vashchenko, A. A.; Vasiliev, R. B.; Sokolikova, M. S. Electroluminescence from colloidal semiconductor CdSe nanoplatelets in hybrid organic-inorganic light emitting diode. Chem. Phys. Lett. 2015, 619, 185–188.

254

Fan, F. J.; Kanjanaboos, P.; Saravanapavanantham, M.; Beauregard, E.; Ingram, G.; Yassitepe, E.; Adachi, M. M.; Voznyy, O.; Johnston, A. K.; Walters, G. et al. Colloidal CdSe1−xSx nanoplatelets with narrow and continuously-tunable electroluminescence. Nano Lett. 2015, 15, 4611–4615.

255

Chen, Z. Y.; Nadal, B.; Mahler, B.; Aubin, H.; Dubertret, B. Quasi-2d colloidal semiconductor nanoplatelets for narrow electroluminescence. Adv. Funct. Mater. 2014, 24, 295–302.

256

Grim, J. Q.; Christodoulou, S.; Di Stasio, F.; Krahne, R.; Cingolani, R.; Manna, L.; Moreels, I. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotechnol 2014, 9, 891–895.

257

Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Yeltik, A.; Delikanli, S.; Demir, H. V. Lateral size-dependent spontaneous and stimulated emission properties in colloidal CdSe nanoplatelets. ACS Nano 2015, 9, 5041–5050.

258

Guzelturk, B.; Kelestemur, Y.; Olutas, M.; Delikanli, S.; Demir, H. V. Amplified spontaneous emission and lasing in colloidal nanoplatelets. ACS Nano 2014, 8, 6599–6605.

259

Tessier, M. D.; Spinicelli, P.; Dupont, D.; Patriarche, G.; Ithurria, S.; Dubertret, B. Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. Nano Lett. 2014, 14, 207–213.

260

Lhuillier, E.; Dayen, J. F.; Thomas, D. O.; Robin, A.; Doudin, B.; Dubertret, B. Nanoplatelets bridging a nanotrench: A new architecture for photodetectors with increased sensitivity. Nano Lett. 2015, 15, 1736–1742.

261

Deng, Z.; Cao, D.; He, J.; Lin, S.; Lindsay, S. M.; Liu, Y. Solution synthesis of ultrathin single-crystalline SnS nanoribbons for photodetectors via phase transition and surface processing. ACS Nano 2012, 6, 6197–6207.

262

Ithurria, S.; Dubertret, B. Quasi 2D colloidal cdse platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008, 130, 16504–16505.

263

Joo, J.; Son, J. S.; Kwon, S. G.; Yu, J. H.; Hyeon, T. Low-temperature solution-phase synthesis of quantum well Structured CdSe nanoribbons. J. Am. Chem. Soc. 2006, 128, 5632–5633.

264

Ondry, J. C.; Philbin, J. P.; Lostica, M.; Rabani, E.; Alivisatos, A. P. Colloidal synthesis path to 2d crystalline quantum dot superlattices. ACS nano 2020, 15, 2251–2262.

265

Takami, S.; Hayakawa, R.; Wakayama, Y.; Chikyow, T. Continuous hydrothermal synthesis of nickel oxide nanoplates and their use as nanoinks for p-type channel material in a bottom-gate field-effect transistor. Nanotechnology 2010, 21, 134009.

266

Cha, J. J.; Koski, K. J.; Huang, K. C. Y.; Wang, K. X.; Luo, W. D.; Kong, D. S.; Yu, Z. F.; Fan, S. H.; Brongersma, M. L.; Cui, Y. Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation. Nano Lett. 2013, 13, 5913–5918.

267

Wang, Y.; Xiu, F. X.; Cheng, L. N.; He, L.; Lang, M.; Tang, J. S.; Kou, X. F.; Yu, X. X.; Jiang, X. W.; Chen, Z. G. et al. Gate-controlled surface conduction in Na-doped Bi2Te3 topological insulator nanoplates. Nano Lett. 2012, 12, 1170–1175.

268

Somorjai, G. A.; Park, J. Y. Colloid science of metal nanoparticle catalysts in 2D and 3D structures. Challenges of nucleation, growth, composition, particle shape, size control and their influence on activity and selectivity. Top. Catal. 2008, 49, 126–135.

269

Gao, C. B.; Lu, Z. D.; Liu, Y.; Zhang, Q.; Chi, M. F.; Cheng, Q.; Yin, Y. D. Highly stable silver nanoplates for surface plasmon resonance biosensing. Angew. Chem., Int. Ed. 2012, 51, 5629–5633.

270

Deka, S.; Quarta, A.; Lupo, M. G.; Falqui, A.; Boninelli, S.; Giannini, C.; Morello, G.; De Giorgi, M.; Lanzani, G.; Spinella, C. et al. CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes. J. Am. Chem. Soc. 2009, 131, 2948–2958.

271

Homan, K. A.; Souza, M.; Truby, R.; Luke, G. P.; Green, C.; Vreeland, E.; Emelianov, S. Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging. ACS Nano 2012, 6, 641–650.

272

Li, J.; Jiang, F.; Yang, B.; Song, X. R.; Liu, Y.; Yang, H. H.; Cao, D. R.; Shi, W. R.; Chen, G. N. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci. Rep. 2013, 3, 1998.

273

Huang, C.; Sun, Z. B.; Cui, H. D.; Pan, T.; Geng, S. Y.; Zhou, W. H.; Chu, P. K.; Yu, X. F. InSe nanosheets for efficient NIR-II-responsive drug release. ACS Appl. Mater. Interfaces 2019, 11, 27521–27528.

274

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

275

Peng, Z. A.; Peng, X. G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123, 1389–1395.

276

Mokari, T.; Banin, U. Synthesis and properties of CdSe/ZnS core/shell nanorods. Chem. Mater. 2003, 15, 3955–3960.

277

Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat. Mater. 2005, 4, 855–863.

278

Ghezelbash, A.; Koo, B.; Korgel, B. A. Self-assembled stripe patterns of CdS nanorods. Nano Lett. 2006, 6, 1832–1836.

279

Pietra, F.; van Dijk-Moes, R. J. A.; Ke, X. X.; Bals, S.; Van Tendeloo, G.; de Mello Donega, C.; Vanmaekelbergh, D. Synthesis of highly luminescent silica-coated CdSe/CdS nanorods. Chem. Mater. 2013, 25, 3427–3434.

280

Bertrand, G. H. V.; Polovitsyn, A.; Christodoulou, S.; Khan, A. H.; Moreels, I. Shape control of zincblende CdSe nanoplatelets. Chem. Commun. 2016, 52, 11975–11978.

281

Khan, A. H.; Pinchetti, V.; Tanghe, I.; Dang, Z. Y.; Martín-García, B.; Hens, Z.; Van Thourhout, D.; Geiregat, P.; Brovelli, S.; Moreels, I. Tunable and efficient red to near-infrared photoluminescence by synergistic exploitation of core and surface silver doping of CdSe nanoplatelets. Chem. Mater. 2019, 31, 1450–1459.

282

Yadav, S.; Singh, A.; Thulasidharan, L.; Sapra, S. Surface decides the photoluminescence of colloidal CdSe nanoplatelets based core/shell heterostructures. J. Phys. Chem. C 2018, 122, 820–829.

283

Taghipour, N.; Hernandez Martinez, P. L.; Ozden, A.; Olutas, M.; Dede, D.; Gungor, K.; Erdem, O.; Perkgoz, N. K.; Demir, H. V. Near-unity efficiency energy transfer from colloidal semiconductor quantum wells of CdSe/CdS nanoplatelets to a monolayer of MoS2. ACS Nano 2018, 12, 8547–8554.

284

Jiang, Y.; Ojo, W. S.; Mahler, B.; Xu, X. Z.; Abécassis, B.; Dubertret, B. Synthesis of CdSe nanoplatelets without short-chain ligands: Implication for their growth mechanisms. ACS Omega 2018, 3, 6199–6205.

285

Polovitsyn, A.; Dang, Z. Y.; Movilla, J. L.; Martín-García, B.; Khan, A. H.; Bertrand, G. H. V.; Brescia, R.; Moreels, I. Synthesis of air-stable CdSe/ZnS core-shell nanoplatelets with tunable emission wavelength. Chem. Mater. 2017, 29, 5671–5680.

286

Antanovich, A.; Prudnikau, A.; Matsukovich, A.; Achtstein, A.; Artemyev, M. Self-assembly of CdSe nanoplatelets into stacks of controlled size induced by ligand exchange. J. Phys. Chem. C 2016, 120, 5764–5775.

287

Rowland, C. E.; Fedin, I.; Zhang, H.; Gray, S. K.; Govorov, A. O.; Talapin, D. V.; Schaller, R. D. Picosecond energy transfer and multiexciton transfer outpaces auger recombination in binary CdSe nanoplatelet solids. Nat. Mater. 2015, 14, 484–489.

288

Naskar, S.; Schlosser, A.; Miethe, J. F.; Steinbach, F.; Feldhoff, A.; Bigall, N. C. Site-selective noble metal growth on CdSe nanoplatelets. Chem. Mater. 2015, 27, 3159–3166.

289

Jana, S.; Phan, T. N. T.; Bouet, C.; Tessier, M. D.; Davidson, P.; Dubertret, B.; Abécassis, B. Stacking and colloidal stability of CdSe nanoplatelets. Langmuir 2015, 31, 10532–10539.

290

Mahler, B.; Nadal, B.; Bouet, C.; Patriarche, G.; Dubertret, B. Core/shell colloidal semiconductor nanoplatelets. J. Am. Chem. Soc. 2012, 134, 18591–18598.

291

Lim, S. J.; Kim, W.; Shin, S. K. Surface-dependent, ligand-mediated photochemical etching of CdSe nanoplatelets. J. Am. Chem. Soc. 2012, 134, 7576–7579.

292

Pedetti, S.; Ithurria, S.; Heuclin, H.; Patriarche, G.; Dubertret, B. Type-II CdSe/CdTe core/crown semiconductor nanoplatelets. J. Am. Chem. Soc. 2014, 136, 16430–16438.

293

Scott, R.; Kickhöfel, S.; Schoeps, O.; Antanovich, A.; Prudnikau, A.; Chuvilin, A.; Woggon, U.; Artemyev, M.; Achtstein, A. W. Temperature dependent radiative and non-radiative recombination dynamics in CdSe-CdTe and CdTe-CdSe type ii hetero nanoplatelets. Phys. Chem. Chem. Phys. 2016, 18, 3197–3203.

294

Antanovich, A. V.; Prudnikau, A. V.; Melnikau, D.; Rakovich, Y. P.; Chuvilin, A.; Woggon, U.; Achtstein, A. W.; Artemyev, M. V. Colloidal synthesis and optical properties of type-II CdSe-CdTe and inverted CdTe-CdSe core-wing heteronanoplatelets. Nanoscale 2015, 7, 8084–8092.

295

Li, Z.; Peng, X. G. Size/shape-controlled synthesis of colloidal CdSe quantum disks: Ligand and temperature effects. J. Am. Chem. Soc. 2011, 133, 6578–6586.

296

Jiang, Y.; Zhang, W. J.; Jie, J. S.; Meng, X. M.; Fan, X.; Lee, S. T. Photoresponse properties of CdSe single-nanoribbon photodetectors. Adv. Funct. Mater. 2007, 17, 1795–1800.

297
Antu, A. D. Morphology and surface passivation of colloidal PbS nanoribbons. Master Degree Thesis, Bowling Green State University, Bowling Green, OH, USA, 2017.
298

Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.

299

Ji, B. T.; Panfil, Y. E.; Banin, U. Heavy-metal-free fluorescent ZnTe/ZnSe nanodumbbells. ACS Nano 2017, 11, 7312–7320.

300

Li, Z.; Qin, H. Y.; Guzun, D.; Benamara, M.; Salamo, G.; Peng, X. G. Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties. Nano Res. 2012, 5, 337–351.

301

Pedetti, S.; Nadal, B.; Lhuillier, E.; Mahler, B.; Bouet, C.; Abécassis, B.; Xu, X. Z.; Dubertret, B. Optimized synthesis of CdTe nanoplatelets and photoresponse of CdTe nanoplatelets films. Chem. Mater. 2013, 25, 2455–2462.

302

VanOrman, Z. A.; Conti III, C. R.; Strouse, G. F.; Nienhaus, L. Red-to-blue photon upconversion enabled by one-dimensional cdte nanorods. Chem. Mater. 2020, 33, 452–458.

303

Izquierdo, E.; Robin, A.; Keuleyan, S.; Lequeux, N.; Lhuillier, E.; Ithurria, S. Strongly confined HgTe 2D nanoplatelets as narrow near-infrared emitters. J. Am. Chem. Soc. 2016, 138, 10496–10501.

304

Morrison, P. J.; Loomis, R. A.; Buhro, W. E. Synthesis and growth mechanism of lead sulfide quantum platelets in lamellar mesophase templates. Chem. Mater. 2014, 26, 5012–5019.

305

Bielewicz, T.; Ramin Moayed, M. M.; Lebedeva, V.; Strelow, C.; Rieckmann, A.; Klinke, C. From dots to stripes to sheets: Shape control of lead sulfide nanostructures. Chem. Mater. 2015, 27, 8248–8254.

306

Choi, J.; Jin, J.; Lee, J.; Park, J. H.; Kim, H. J.; Oh, D. H.; Ahn, J. R.; Son, S. U. Columnar assembly and successive heating of colloidal 2D nanomaterials on graphene as an efficient strategy for new anode materials in lithium ion batteries: The case of In2S3 nanoplates. J. Mater. Chem. 2012, 22, 11107–11112.

307

Acharya, S.; Dutta, M.; Sarkar, S.; Basak, D.; Chakraborty, S.; Pradhan, N. Synthesis of micrometer length indium sulfide nanosheets and study of their dopant induced photoresponse properties. Chem. Mater. 2012, 24, 1779–1785.

308

Ye, F. M.; Wang, C.; Du, G. H.; Chen, X. B.; Zhong, Y. J.; Jiang, J. Z. Large-scale synthesis of In2S3 nanosheets and their rechargeable lithium-ion battery. J. Mater. Chem. 2011, 21, 17063–17065.

309

Park, K. H.; Jang, K.; Son, S. U. Synthesis, optical properties, and self-assembly of ultrathin hexagonal In2S3 nanoplates. Angew. Chem. 2006, 118, 4724–4728.

310

Cao, Y. C. Synthesis of square gadolinium-oxide nanoplates. J. Am. Chem. Soc. 2004, 126, 7456–7457.

311

Zhao, Y. S.; Yu, Y. L.; Gao, F. M. InP nanowires synthesized via solvothermal process with CTAB assisted. J. Cryst. Growth 2013, 371, 148–154.

312

Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 12700–12706.

313

Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10, 936–941.

314

Kunneman, L. T.; Tessier, M. D.; Heuclin, H.; Dubertret, B.; Aulin, Y. V.; Grozema, F. C.; Schins, J. M.; Siebbeles, L. D. A. Bimolecular auger recombination of electron-hole pairs in two-dimensional CdSe and CdSe/CdZnS core/shell nanoplatelets. J. Phys. Chem. Lett. 2013, 4, 3574–3578.

315

She, C. X.; Fedin, I.; Dolzhnikov, D. S.; Demortière, A.; Schaller, R. D.; Pelton, M.; Talapin, D. V. Low-threshold stimulated emission using colloidal quantum wells. Nano Lett. 2014, 14, 2772–2777.

316

Prudnikau, A.; Chuvilin, A.; Artemyev, M. CdSe-CdS nanoheteroplatelets with efficient photoexcitation of central CdSe region through epitaxially grown CdS wings. J. Am. Chem. Soc. 2013, 135, 14476–14479.

317

Kramer, I. J.; Levina, L.; Debnath, R.; Zhitomirsky, D.; Sargent, E. H. Solar cells using quantum funnels. Nano Lett. 2011, 11, 3701–3706.

318
Massadeh, S.; Xu, S.; Nann, T. Synthesis and exploitation of InP/ZnS quantum dots for bioimaging. In Proceedings of SPIE 7189, Colloidal Quantum Dots for Biomedical Applications IV, San Jose, California, United States, 2009, pp 718902.https://doi.org/10.1117/12.816892
319

Soenen, S. J.; Manshian, B. B.; Aubert, T.; Himmelreich, U.; Demeester, J.; De Smedt, S. C.; Hens, Z.; Braeckmans, K. Cytotoxicity of cadmium-free quantum dots and their use in cell bioimaging. Chem. Res. Toxicol. 2014, 27, 1050–1059.

320

Chen, Y. C.; Fan, X. D. Biological lasers for biomedical applications. Adv. Opt. Mater. 2019, 7, 1900377.

321

Martino, N.; Kwok, S. J. J.; Liapis, A. C.; Forward, S.; Jang, H.; Kim, H. M.; Wu, S. J.; Wu, J. M.; Dannenberg, P. H.; Jang, S. J. et al. Wavelength-encoded laser particles for massively multiplexed cell tagging. Nat. Photonics 2019, 13, 720–727.

322

Jung, H.; Ahn, N.; Klimov, V. I. Prospects and challenges of colloidal quantum dot laser diodes. Nat. Photonics 2021, 15, 643–655.

323

Pu, Y.; Cai, F. H.; Wang, D.; Wang, J. X.; Chen, J. F. Colloidal synthesis of semiconductor quantum dots toward large-scale production: A review. Ind. Eng. Chem. Res. 2018, 57, 1790–1802.

324

Bang, E.; Choi, Y.; Cho, J.; Suh, Y. H.; Ban, H. W.; Son, J. S.; Park, J. Large-scale synthesis of highly luminescent InP@ZnS quantum dots using elemental phosphorus precursor. Chem. Mater. 2017, 29, 4236–4243.

325

Baek, J.; Shen, Y.; Lignos, I.; Bawendi, M. G.; Jensen, K. F. Multistage microfluidic platform for the continuous synthesis of III-V core/shell quantum dots. Angew. Chem. 2018, 130, 11081–11084.

Nano Research
Pages 4468-4489
Cite this article:
Jalali HB, Sadeghi S, Yuksel IBD, et al. Past, present and future of indium phosphide quantum dots. Nano Research, 2022, 15(5): 4468-4489. https://doi.org/10.1007/s12274-021-4038-z
Topics:

1786

Views

72

Crossref

65

Web of Science

69

Scopus

0

CSCD

Altmetrics

Received: 13 June 2021
Revised: 01 December 2021
Accepted: 02 December 2021
Published: 18 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return