AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Different micro/nano-scale patterns of surface materials influence osteoclastogenesis and actin structure

Tsukasa Akasaka1( )Miho Tamai2Yoshitaka Yoshimura3Natsumi Ushijima4Shinichiro Numamoto5Atsuro Yokoyama5Hirofumi Miyaji6Ryo Takata7Shuichi Yamagata7Yoshiaki Sato7Ko Nakanishi1Yasuhiro Yoshida1
Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
Department of Pharmacology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
Support Section for Education and Research, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
Oral Functional Prosthodontics, Division of Oral Functional Science, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Optimal surface patterns for inducing osteoclastogenesis and characteristic actin structures on pillars were found.

Abstract

The surface topography of a material can influence osteoclast activity. However, the surface structural factors that promote osteoclast activity have not yet been investigated in detail. Therefore, we investigated osteoclastogenesis by testing various defined patterns with different dimensions and shapes. The systematic patterns, made of a cyclo-olefin polymer, were prepared at a micron-, submicron-, and nano-scale with a groove, hole, or pillar shape with a 1:1 pitch ratio. RAW264.7 cells were cultured on these patterns in the presence of the receptor activator of NF-κB ligand (RANKL). Osteoclast formation was induced in the order: pillar > groove ≥ hole. The two-dimensional factors also indicated that submicron-sized patterns strongly induced osteoclast formation. The optimal pillar dimension for osteoclast formation was 500 nm in diameter and 2 µm in height. Furthermore, we observed two types of characteristic actin structure, i.e., belt-like structures with small hollow circles and isolated ring-like structures, which formed on or around the pillars depending on size and height. Furthermore, resorption pits were observed mainly on the top of calcium phosphate-coated pillars. Thus, osteoclasts prefer convex shapes, such as pillars for differentiation and resorption. Our results indicate that osteoclastogenesis can be controlled by designing surfaces with specific morphologies.

Electronic Supplementary Material

Download File(s)
12274_2021_4026_MOESM1_ESM.pdf (2.1 MB)

References

1

Marchisio, M.; Di Carmine, M.; Pagone, R.; Piattelli, A.; Miscia, S. Implant surface roughness influences osteoclast proliferation and differentiation. J. Biomed. Mater. Res. B: Appl. Biomater. 2005, 75B, 251–256.

2

Boyce, B.; Yao, Z. Q.; Xing, L. P. Osteoclasts have multiple roles in bone in addition to bone resorption. Crit. Rev. Eukaryot. Gene Expr. 2009, 19, 171–180.

3

Novack, D. V.; Teitelbaum, S. L. The osteoclast: Friend or foe? Annu. Rev. Pathol.: Mech. Dis. 2008, 3, 457–484.

4

Webster, T. J.; Ergun, C.; Doremus, R. H.; Siegel, R. W.; Bizios, R. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials 2001, 22, 1327–1333.

5

Nguyen, J.; Nohe, A. Factors that affect the osteoclastogenesis of RAW264.7 cells. J. Biochem. Anal. Stud. 2017, 2.

6

Detsch, R.; Boccaccini, A. R. The role of osteoclasts in bone tissue engineering. J. Tissue Eng. Regen. Med. 2015, 9, 1133–1149.

7

Boyan, B. D.; Lotz, E. M.; Schwartz, Z. Roughness and hydrophilicity as osteogenic biomimetic surface properties. Tissue Eng. Part A 2017, 23, 1479–1489.

8

Geblinger, D.; Addadi, L.; Geiger, B. Nano-topography sensing by osteoclasts. J. Cell Sci. 2010, 123, 1503–1510.

9

Shemesh, M.; Addadi, S.; Milstein, Y.; Geiger, B.; Addadi, L. Study of osteoclast adhesion to cortical bone surfaces: A correlative microscopy approach for concomitant imaging of cellular dynamics and surface modifications. ACS Appl. Mater. Interfaces 2016, 8, 14932–14943.

10

Ciapetti, G.; Di Pompo, G.; Avnet, S.; Martini, D.; Diez-Escudero, A.; Montufar, E. B.; Ginebra, M. P.; Baldini, N. Osteoclast differentiation from human blood precursors on biomimetic calcium-phosphate substrates. Acta Biomater. 2017, 50, 102–113.

11

Davison, N. L.; Ten Harkel, B.; Schoenmaker, T.; Luo, X. M.; Yuan, H. P.; Everts, V.; Groot, F. B. D.; De Bruijn, J. D. Osteoclast resorption of beta-tricalcium phosphate controlled by surface architecture. Biomaterials 2014, 35, 7441–7451.

12

Costa, D. O.; Prowse, P. D. H.; Chrones, T.; Sims, S. M.; Hamilton, D. W.; Rizkalla, A. S.; Dixon, S. J. The differential regulation of osteoblast and osteoclast activity by surface topography of hydroxyapatite coatings. Biomaterials 2013, 34, 7215–7226.

13

Chen, F. Y.; Wang, M. L.; Wang, J.; Chen, X. N.; Li, X. F.; Xiao, Y. M.; Zhang, X. D. Effects of hydroxyapatite surface nano/micro-structure on osteoclast formation and activity. J. Mater. Chem. B 2019, 7, 7574–7587.

14

Zhang, Y.; Chen, S. E.; Shao, J. L.; Van Den Beucken, J. J. J. P. Combinatorial surface roughness effects on osteoclastogenesis and osteogenesis. ACS Appl. Mater. Interfaces 2018, 10, 36652–36663.

15

Matsunaga, T.; Inoue, H.; Kojo, T.; Hatano, K.; Tsujisawa, T.; Uchiyama, C.; Uchida, Y. Disaggregated osteoclasts increase in resorption activity in response to roughness of bone surface. J. Biomed. Mater. Res. 1999, 48, 417–423.

16

Costa-Rodrigues, J.; Fernandes, A.; Lopes, M. A.; Fernandes, M. H. Hydroxyapatite surface roughness: Complex modulation of the osteoclastogenesis of human precursor cells. Acta Biomater. 2012, 8, 1137–1145.

17

Höner, M.; Lauria, I.; Dabhi, C.; Kant, S.; Leube, R. E.; Fischer, H. Periodic microstructures on bioactive glass surfaces enhance osteogenic differentiation of human mesenchymal stromal cells and promote osteoclastogenesis in vitro. J. Biomed. Mater. Res. A 2018, 106, 1965–1978.

18

Takata, R.; Akasaka, T.; Tamai, M.; Yoshimura, Y.; Taira, T.; Miyaji, H.; Tagawa, Y.; Yamagata, S.; Iida, J.; Yoshida, Y. Effect of a nano-scale fine hole pattern on the differentiation of RAW264.7 cells into osteoclasts. Dig. J. Nanomater. Biostruct 2018, 13, 451–458.

19

Li, M. J.; Fu, X. L.; Gao, H. C.; Ji, Y. R.; Li, J.; Wang, Y. J. Regulation of an osteon-like concentric microgrooved surface on osteogenesis and osteoclastogenesis. Biomaterials 2019, 216, 119269.

20

Silverwood, R. K.; Fairhurst, P. G.; Sjöström, T.; Welsh, F.; Sun, Y. X.; Li, G.; Yu, B.; Young, P. S.; Su, B.; Meek, R. M. D. et al. Analysis of osteoclastogenesis/osteoblastogenesis on nanotopographical titania surfaces. Adv. Healthc. Mater. 2016, 5, 947–955.

21

Halai, M.; Ker, A.; Meek, R. D.; Nadeem, D.; Sjostrom, T.; Su, B.; McNamara, L. E.; Dalby, M. J.; Young, P. S. Scanning electron microscopical observation of an osteoblast/osteoclast co-culture on micropatterned orthopaedic ceramics. J. Tissue Eng. 2014, 5, 2041731414552114.

22

Young, P. S.; Tsimbouri, P. M.; Gadegaard, N.; Meek, R. M. D.; Dalby, M. J. Osteoclastogenesis/osteoblastogenesis using human bone marrow-derived cocultures on nanotopographical polymer surfaces. Nanomedicine 2015, 10, 949–957.

23

Niida, A.; Yasuhiko, Y.; Well, T. O.; Hirose, Y.; Ochi, M. Effect of surface shape on osteoclast-like cell dynamics. J. Jpn. Soc. Oral Implantol. 2013, 26, 651–659.

24

Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Nanoimprint lithography. J. Vac. Sci. Technol. B 1996, 14, 4129–4133.

25

Van Dommelen, R.; Fanzio, P.; Sasso, L. Surface self-assembly of colloidal crystals for micro- and nano-patterning. Adv. Colloid Interface Sci. 2018, 251, 97–114.

26

Mishra, S.; Yadava, V. Laser beam micromachining (LBMM)—a review. Opt. Lasers Eng. 2015, 73, 89–122.

27

Lima, M. J.; Correlo, V. M.; Reis, R. L. Micro/nano replication and 3D assembling techniques for scaffold fabrication. Mater. Sci. Eng.: C 2014, 42, 615–621.

28

Anselme, K.; Davidson, P.; Popa, A. M.; Giazzon, M.; Liley, M.; Ploux, L. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater. 2010, 6, 3824–3846.

29

Dobbenga, S.; Fratila-Apachitei, L. E.; Zadpoor, A. A. Nanopattern-induced osteogenic differentiation of stem cells - a systematic review. Acta Biomater. 2016, 46, 3–14.

30

Jaggessar, A.; Shahali, H.; Mathew, A.; Yarlagadda, P. K. D. V. Bio-mimicking Nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnol. 2017, 15, 64.

31

Dai, J.; Yao, Y. Adaptive ordering and filament polymerization of cell cytoskeleton by tunable nanoarrays. Nano Res. 2021, 14, 620–627.

32

Lorite, G. S.; Ylä-Outinen, L.; Janssen, L.; Pitkänen, O.; Joki, T.; Koivisto, J. T.; Kellomäki, M.; Vajtai, R.; Narkilahti, S.; Kordas, K. Carbon nanotube micropillars trigger guided growth of complex human neural stem cells networks. Nano Res. 2019, 12, 2894–2899.

33

Honma, J.; Akasaka, T.; Tamai, M.; Yoshimura, Y.; Taira, T.; Miyaji, H.; Yamagata, S.; Sato, Y.; Yoshida, Y. Fusion of RAW 264.7 macrophage cells on micro-scale fine pillar patterns. Dig. J. Nanomater. Biostruct 2018, 13, 1123–1131.

34

Yamazaki, M. Industrialization and application development of cyclo-olefin polymer. J. Mol. Catal. A:Chem. 2004, 213, 81–87.

35

Strehmel, C.; Perez-Hernandez, H.; Zhang, Z. F.; Löbus, A.; Lasagni, A. F.; Lensen, M. C. Geometric control of cell alignment and spreading within the confinement of antiadhesive poly(ethylene glycol) microstructures on laser-patterned surfaces. ACS Biomater. Sci. Eng. 2015, 1, 747–752.

36

Akasaka, T.; Yokoyama, A.; Matsuoka, M.; Hashimoto, T.; Watari, F. Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations. Mater. Sci. Eng.: C 2010, 30, 391–399.

37

Omori, A.; Yoshimura, Y.; Deyama, Y.; Suzuki, K. Rosmarinic acid and arbutin suppress osteoclast differentiation by inhibiting superoxide and NFATc1 downregulation in RAW 264.7 cells. Biomed. Rep. 2015, 3, 483–490.

38

Miyazaki, T.; Miyauchi, S.; Anada, T.; Imaizumi, H.; Suzuki, O. Evaluation of osteoclastic resorption activity using calcium phosphate coating combined with labeled polyanion. Anal. Biochem. 2011, 410, 7–12.

39

Maria, S. M.; Prukner, C.; Sheikh, Z.; Mueller, F.; Barralet, J. E.; Komarova, S. V. Reproducible quantification of osteoclastic activity: Characterization of a biomimetic calcium phosphate assay. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 903–912.

40

Wen, H. B.; De Wijn, J. R.; Liu, Q.; De Groot, K.; Cui, F. Z. A simple method to prepare calcium phosphate coatings on Ti6Al4V. J. Mater. Sci.: Mater. Med. 1997, 8, 765–770.

41

Takada, S.; Hirata, E.; Sakairi, M.; Miyako, E.; Takano, Y.; Ushijima, N.; Yudasaka, M.; Iijima, S.; Yokoyama, A. Carbon nanohorn coating by electrodeposition accelerate bone formation on titanium implant. Artif. Cells Nanomed. Biotechnol. 2021, 49, 20–29.

42

Shitomi, K.; Miyaji, H.; Miyata, S.; Sugaya, T.; Ushijima, N.; Akasaka, T.; Kawasaki, H. Photodynamic inactivation of oral bacteria with silver nanoclusters/rose bengal nanocomposite. Photodiagnosis Photodyn. Ther. 2020, 30, 101647.

43

Van Den Dries, K.; Bolomini-Vittori, M.; Cambi, A. Spatiotemporal organization and mechanosensory function of podosomes. Cell Adh. Migr. 2014, 8, 268–272.

44

Linder, S.; Wiesner, C. Feel the force: Podosomes in mechanosensing. Exp. Cell Res. 2016, 343, 67–72.

45

More, S. E.; Dave, J. R.; Makar, P. K.; Bhoraskar, S. V.; Premkumar, S.; Tomar, G. B.; Mathe, V. L. Surface modification of UHMWPE using ECR plasma for osteoblast and osteoclast differentiation. Appl. Surf. Sci. 2020, 506, 144665.

46

Costa-Rodrigues, J.; Carmo, S.; Perpétuo, I. P.; Monteiro, F. J.; Fernandes, M. H. Osteoclastogenic differentiation of human precursor cells over micro- and nanostructured hydroxyapatite topography. Biochim. Biophys. Acta-Gen. Subj. 2016, 1860, 825–835.

47

Redey, S. A.; Razzouk, S.; Rey, C.; Bernache-Assollant, D.; Leroy, G.; Nardin, M. Cournot, G. Osteoclast adhesion and activity on synthetic hydroxyapatite, carbonated hydroxyapatite, and natural calcium carbonate: Relationship to surface energies. J. Biomed. Mater. Res. 1999, 45, 140–147.

48

Davison, N. L.; Su, J.; Yuan, H.; Van Den Beucken, J. J. J. P.; De Bruijn, J. D.; Groot, F. B. D. Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs. Eur. Cell. Mater. 2015, 29, 314–329.

49

Shiwaku, Y.; Hamai, R.; Sato, S.; Sakai, S.; Tsuchiya, K.; Baba, K.; Takahashi, T.; Suzuki, O. Bone tissue response to different grown crystal batches of octacalcium phosphate in rat long bone intramedullary canal area. Int. J. Mol. Sci. 2021, 22, 9770.

50

Schachtner, H.; Calaminus, S. D. J.; Thomas, S. G.; Machesky, L. M. Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton 2013, 70, 572–589.

51

Saltel, F.; Chabadel, A.; Bonnelye, E.; Jurdic, P. Actin cytoskeletal organisation in osteoclasts: A model to decipher transmigration and matrix degradation. Eur. J. Cell Biol. 2008, 87, 459–468.

52

Geblinger, D.; Zink, C.; Spencer, N. D.; Addadi, L.; Geiger, B. Effects of surface microtopography on the assembly of the osteoclast resorption apparatus. J. R. Royal Soc. Interface 2012, 9, 1599–1608.

53

Anderegg, F.; Geblinger, D.; Horvath, P.; Charnley, M.; Textor, M.; Addadi, L.; Geiger, B. Substrate adhesion regulates sealing zone architecture and dynamics in cultured osteoclasts. PLoS One 2011, 6, e28583.

54

Gross, K. A.; Muller, D.; Lucas, H.; Haynes, D. R. Osteoclast resorption of thermal spray hydoxyapatite coatings is influenced by surface topography. Acta Biomater. 2012, 8, 1948–1956.

Nano Research
Pages 4201-4211
Cite this article:
Akasaka T, Tamai M, Yoshimura Y, et al. Different micro/nano-scale patterns of surface materials influence osteoclastogenesis and actin structure. Nano Research, 2022, 15(5): 4201-4211. https://doi.org/10.1007/s12274-021-4026-3
Topics:

1140

Views

50

Downloads

12

Crossref

14

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 16 September 2021
Revised: 25 November 2021
Accepted: 28 November 2021
Published: 17 January 2022
© The Author(s) 2021, corrected publication 2022

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return