Journal Home > Volume 15 , Issue 6

Water electrolysis is severely impeded by the kinetically sluggish oxygen evolution reaction (OER) due to its inherent multistep four-electron transfer mechanism. However, designing advanced OER electrocatalysts with abundant active sites, robust stability, and low cost remains a huge challenge. Herein, a facile and versatile multiscale manipulating strategy was proposed to construct a novel V-NiFe2O4@Ni2P heterostructure self-supported on Ni foam (V-NiFe2O4@Ni2P/NF). In such unique architecture, the intrinsic OER catalytic activity was greatly boosted by the in-situ generated heterogeneous Ni2P phase induced by precisely selective phosphorylation of the NiFe-precursor, while the synchronous metal V doping stimulated the activity via modulating the electronic configuration, thus synergistically promoting its OER kinetics. In addition, the binder-free catalyst built from three-dimensional (3D) nanosheet arrays (NSs) can offer a large active surface for efficient charge/mass transfer and a robust scaffold for the integrated structure. The as-prepared flexible electrode exhibited superior OER activity with an ultra-low overpotential of 230 mV at 50 mA·cm−2 and outstanding long-term stability for 40 h. This discovery is expected to provide an opportunity to explore efficient and stable commercial materials for scalable, efficient, and robust electrochemical hydrogen (H2) production.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multiscale manipulating induced flexible heterogeneous V-NiFe2O4@Ni2P electrocatalyst for efficient and durable oxygen evolution reaction

Show Author's information Siran Xu1Xin Yu1Li Luo1Wenjing Li1Yeshuang Du1Qingquan Kong2Qi Wu1( )
Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
College of Mechanical Engineering, Chengdu University, Chengdu 610106, China

Abstract

Water electrolysis is severely impeded by the kinetically sluggish oxygen evolution reaction (OER) due to its inherent multistep four-electron transfer mechanism. However, designing advanced OER electrocatalysts with abundant active sites, robust stability, and low cost remains a huge challenge. Herein, a facile and versatile multiscale manipulating strategy was proposed to construct a novel V-NiFe2O4@Ni2P heterostructure self-supported on Ni foam (V-NiFe2O4@Ni2P/NF). In such unique architecture, the intrinsic OER catalytic activity was greatly boosted by the in-situ generated heterogeneous Ni2P phase induced by precisely selective phosphorylation of the NiFe-precursor, while the synchronous metal V doping stimulated the activity via modulating the electronic configuration, thus synergistically promoting its OER kinetics. In addition, the binder-free catalyst built from three-dimensional (3D) nanosheet arrays (NSs) can offer a large active surface for efficient charge/mass transfer and a robust scaffold for the integrated structure. The as-prepared flexible electrode exhibited superior OER activity with an ultra-low overpotential of 230 mV at 50 mA·cm−2 and outstanding long-term stability for 40 h. This discovery is expected to provide an opportunity to explore efficient and stable commercial materials for scalable, efficient, and robust electrochemical hydrogen (H2) production.

Keywords: oxygen evolution reaction (OER), V doping, binder-free catalyst, large active surface

References(53)

1

Xia, C.; Qiu, Y. R.; Xia, Y.; Zhu, P.; King, G.; Zhang, X.; Wu, Z. Y.; Kim, J. Y.; Cullen, D. A.; Zheng, D. X. et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 2021, 13, 887–894.

2

Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375–380.

3

Zhang, L. C.; Zhao, H. T.; Xu, S. R.; Liu, Q.; Li, T. S.; Luo, Y. L.; Gao, S. Y.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Recent advances in 1D electrospun nanocatalysts for electrochemical water splitting. Small Struct. 2021, 2, 2000048.

4

Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

5
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res., in press, DOI: 10.1007/s12274-021-3794-0.https://doi.org/10.1007/s12274-021-3794-0
DOI
6

Guo, W. H.; Zhang, Q.; Wang, X. H.; Yang, Y. X.; Li, X. L.; Li, L. J.; Luo, H. Q.; Li, N. B. MOF-derived V-CoxP@NC nanoarchitectures for highly enhanced electrocatalytic water splitting through electronical tuning. Electrochim. Acta 2020, 357, 136850.

7

Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and Interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

8

Ye, C.; Zhang, L. C.; Yue, L. C.; Deng, B.; Cao, Y.; Liu, Q.; Luo, Y. L.; Lu, S. Y.; Zheng, B. Z.; Sun, X. P. A NiCo LDH nanosheet array on graphite felt: An efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media. Inorg. Chem. Front. 2021, 8, 3162–3166.

9

Ding, P.; Meng, C. Q.; Liang, J.; Li, T. S.; Wang, Y.; Liu, Q.; Luo, Y. L.; Cui, G. W.; Asiri, A. M.; Lu, S. Y. et al. NiFe layered-double-hydroxide nanosheet arrays on graphite felt: A 3D electrocatalyst for highly efficient water oxidation in alkaline media. Inorg. Chem. 2021, 60, 12703–12708.

10

Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

11

Li, C. Y.; Liu, M. D.; Ding, H. Y.; He, L. Q.; Wang, E. Z.; Wang, B. L.; Fan, S. S.; Liu, K. A lightly Fe-doped (NiS2/MoS2)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 17527–17536.

12

Wang, D.; Chang, Y. X.; Li, Y. R.; Zhang, S. L.; Xu, S. L. Well-dispersed NiCoS2 nanoparticles/rGO composite with a large specific surface area as an oxygen evolution reaction electrocatalyst. Rare Met. 2021, 40, 3156–3165.

13

Guan, H. M.; Li, W. T.; Han, J.; Yi, W. C.; Bai, H.; Kong, Q. H.; Xi, G. C. General molten-salt route to three-dimensional porous transition metal nitrides as sensitive and stable Raman substrates. Nat. Commun. 2021, 12, 1376.

14

Liu, C. C.; Gong, T.; Zhang, J.; Zheng, X. R.; Mao, J.; Liu, H.; Li, Y.; Hao, Q. Y. Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution. Appl. Catal. B:Environ. 2020, 262, 118245.

15

Yu, X.; Xu, S. R.; Wang, Z.; Wang, S.; Zhang, J.; Liu, Q.; Luo, Y. L.; Du, Y. S.; Sun, X. P.; Wu, Q. Self-supported Ni3S2@Ni2P/MoS2 heterostructures on nickel foam for an outstanding oxygen evolution reaction and efficient overall water splitting. Dalton Trans. 2021, 50, 15094–15102.

16

Qiao, Y. Y.; Yuan, P. F.; Pao, C. W.; Cheng, Y.; Pu, Z. H.; Xu, Q.; Mu, S. C.; Zhang, J. N. Boron-rich environment boosting ruthenium boride on B, N doped carbon outperforms platinum for hydrogen evolution reaction in a universal pH range. Nano Energy 2020, 75, 104881.

17

Pan, S. C.; Yu, J.; Zhang, Y. X.; Li, B. Pulsed laser deposited Cr-doped CoFe2O4 thin film as highly efficient oxygen evolution reaction electrode. Mater. Lett. 2020, 262, 127027.

18

Duan, J. J.; Zhang, R. L.; Feng, J. J.; Zhang, L.; Zhang, Q. L.; Wang, A. J. Facile synthesis of nanoflower-like phosphorus-doped Ni3S2/CoFe2O4 arrays on nickel foam as a superior electrocatalyst for efficient oxygen evolution reaction. J. Colloid Interface Sci. 2021, 581, 774–782.

19

Chen, X. K.; Zhang, X. H.; Zhuang, L. Z.; Zhang, W.; Zhang, N. C.; Liu, H. W.; Zhan, T. R.; Zhang, X. L.; She, X. L.; Yang, D. J. Multiple vacancies on (111) facets of single-crystal NiFe2O4 spinel boost electrocatalytic oxygen evolution reaction. Chem. - Asian J. 2020, 15, 3995–3999.

20

Chu, D. W.; Li, F. B.; Song, X. M.; Ma, H. Y.; Tan, L. C.; Pang, H. J.; Wang, X. M.; Guo, D. X.; Xiao, B. X. A novel dual-tasking hollow cube NiFe2O4-NiCo-LDH@rGO hierarchical material for high preformance supercapacitor and glucose sensor. J. Colloid Interface Sci. 2020, 568, 130–138.

21

Fu, Z. Q.; Liu, S. L.; Mai, Z.; Tang, Z. H.; Qin, D. D.; Tian, Y.; Wang, X. F. Heterostructure and oxygen vacancies promote NiFe2O4/Ni3S4 toward oxygen evolution reaction and Zn-Air batteries. Chem. - Asian J. 2020, 15, 3568–3574.

22

Xu, S. R.; Du, Y. S.; Yu, X.; Wang, Z.; Cheng, X. H.; Liu, Q.; Luo, Y. L.; Sun, X. P.; Wu, Q. A Cr-FeOOH@Ni-P/NF binder-free electrode as an excellent oxygen evolution reaction electrocatalyst. Nanoscale 2021, 13, 17003–17010.

23

Zhao, T. W.; Shen, X. J.; Wang, Y.; Hocking, R. K.; Li, Y. B.; Rong, C. L.; Dastafkan, K.; Su, Z.; Zhao, C. In situ reconstruction of V-Doped Ni2P Pre-catalysts with tunable electronic structures for water oxidation. Adv. Funct. Mater. 2021, 31, 2100614.

24

Xiong, L. F.; Wang, B.; Cai, H. R.; Hao, H. J.; Li, J.; Yang, T.; Yang, S. C. Understanding the doping effect on hydrogen evolution activity of transition-metal phosphides: Modeled with Ni2P. Appl. Catal. B:Environ. 2021, 295, 120283.

25

Zhang, J. N.; Wang, K. X.; Xu, Q.; Zhou, C. Y.; Cheng, F. Y.; and Guo,S. J. Beyond yolk_shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 2015, 9, 3369–3376.

26

Li, X.; Huang, W. Q.; Xia, L. X.; Li, Y. Y.; Zhang, H. W.; Ma, S. F.; Wang, Y. M.; Wang, X. J.; Huang, G. F. NiFe2O4/NiFeP heterostructure grown on nickel foam as an efficient electrocatalyst for water oxidation. ChemElectroChem 2020, 7, 4047–4054.

27

Choi, J.; Kim, D.; Zheng, W. R.; Yan, B. Y.; Li, Y.; Lee, L. Y. S.; Piao, Y. Z. Interface engineered NiFe2O4−x/NiMoO4 nanowire arrays for electrochemical oxygen evolution. Appl. Catal. B:Environ. 2021, 286, 119857.

28

Bao, W. W.; Xiao, L.; Zhang, J. J.; Deng, Z. F.; Yang, C. M.; Ai, T. T.; Wei, X. L. Interface engineering of NiV-LDH@FeOOH heterostructures as high-performance electrocatalysts for oxygen evolution reaction in alkaline conditions. Chem. Commun. 2020, 56, 9360–9363.

29

Zhai, P. L.; Xia, M. Y.; Wu, Y. Z.; Zhang, G. H.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Fan, Z. Z. et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.

30

Chen, J.; Qi, X. P.; Liu, C.; Zeng, J. M.; Liang, T. X. Interfacial engineering of a MoO2-CeF3 heterostructure as a high-performance hydrogen evolution reaction catalyst in both alkaline and acidic solutions. ACS Appl. Mater. Interfaces 2020, 12, 51418–51427.

31
Kashale, A. A.; Yi, C. H.; Cheng, K. Y.; Guo, J. S.; Pan, Y. H.; Chen, I. W. P. Binder-free heterostructured NiFe2O4/NiFe LDH nanosheet composite electrocatalysts for oxygen evolution reactions. ACS Appl. Energy Mater. 2020, 3, 10831–10840.
32

Rao, Y.; Wang, S. W.; Zhang, R. Y.; Jiang, S. H.; Chen, S.; Yu, Y. N.; Bao, S. J.; Xu, M. W.; Yue, Q.; Xin, H. L. et al. Nanoporous V-Doped Ni5P4 microsphere: A highly efficient electrocatalyst for hydrogen evolution reaction at all pH. ACS Appl. Mater. Interfaces 2020, 12, 37092–37099.

33

Suo, N.; Chen, C.; Han, X. Q.; He, X. Q.; Dou, Z. Y.; Lin, Z. H.; Cui, L. L.; Xiang, J. B. The construction of hydrangea-like vanadium-doped iron nickel phosphide as an enhanced bifunctional electrocatalyst for overall water splitting. ACS Appl. Energy Mater. 2020, 3, 9449–9458.

34

Roh, H.; Jung, H.; Choi, H.; Han, J. W.; Park, T.; Kim, S.; Yong, K. Various metal (Fe, Mo, V, Co)-doped Ni2P nanowire arrays as overall water splitting electrocatalysts and their applications in unassisted solar hydrogen production with STH 14%. Appl. Catal. B:Environ. 2021, 297, 120434.

35

Xu, S. R.; Zhao, H. T.; Li, T. S.; Liang, J.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Asiri, A. M.; Wu, Q.; Sun, X. P. Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: Recent advances and future prospects. J. Mater. Chem. A 2020, 8, 19729–19745.

36

Xu, S. R.; Du, Y. S.; Liu, X.; Yu, X.; Teng, C. L.; Cheng, X. H.; Chen, Y. F.; Wu, Q. Three-dimensional (3D) hierarchical coral-like Mn-doped Ni2P–Ni5P4/NF catalyst for efficient oxygen evolution. J. Alloys Compd. 2020, 826, 154210.

37

Xie, Q. X.; Zhou, D. J.; Li, P. S.; Cai, Z.; Xie, T. H.; Gao, T. F.; Chen, R. D.; Kuang, Y.; Sun, X. M. Enhancing oxygen evolution reaction by cationic surfactants. Nano Res. 2019, 12, 2302–2306.

38

de Wijs, G. A.; Kresse, G.; Vočadlo, L.; Dobson, D.; Alfè, D.; Gillan, M. J.; Price, G. D. The viscosity of liquid iron at the physical conditions of the Earth’s core. Nature 1998, 392, 805–807.

39

Kresse, G.; Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys.: Condens. Matter 1994, 6, 8245–8257.

40

Alfè, D.; Gillan, M. J.; Price, G. D. The melting curve of iron at the pressures of the Earth’s core from ab initio calculations. Nature 1999, 401, 462–464.

41

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

42

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

43

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

44

Qin, J. F.; Lin, J. H.; Chen, T. S.; Liu, D. P.; Xie, J. Y.; Guo, B. Y.; Wang, L.; Chai, Y. M.; Dong, B. Facile synthesis of V-doped CoP nanoparticles as bifunctional electrocatalyst for efficient water splitting. J. Energy Chem. 2019, 39, 182–187.

45

Liao, C. A.; Xiao, Z. Y.; Zhang, N.; Liang, B.; Chen, G.; Wu, W.; Pan, J. L.; Liu, M.; Zheng, X. R.; Kang, Q. et al. Photo-irradiation tunes highly active sites over β-Ni(OH)2 nanosheets for the electrocatalytic oxygen evolution reaction. Chem. Commun. 2021, 57, 9060–9063.

46

Yu, X. Y.; Feng, Y.; Guan, B. Y.; Lou, X. W.; Paik, U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy Environ. Sci. 2016, 9, 1246–1250.

47

Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.

48

Luan, X. Q.; Du, H. T.; Kong, Y.; Qu, F. L.; Lu, L. M. A novel FeS-NiS hybrid nanoarray: An efficient and durable electrocatalyst for alkaline water oxidation. Chem. Commun. 2019, 55, 7335–7338.

49

Lim, D.; Kong, H.; Kim, N.; Lim, C.; Ahn, W. S.; Baeck, S. H. Oxygen-deficient NiFe2O4 spinel nanoparticles as an enhanced electrocatalyst for the oxygen evolution reaction. ChemNanoMat 2019, 5, 1296–1302.

50

Yu, X.; Xu, S. R.; Wang, Z.; Cheng, X. H.; Du, Y. S.; Chen, G.; Sun, X. P.; Wu, Q. An Mn-doped NiCoP flower-like structure as a highly efficient electrocatalyst for hydrogen evolution reaction in acidic and alkaline solutions with long duration. Nanoscale 2021, 13, 11069–11076.

51

Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

52

Wang, Z. C.; Liu, H. L.; Ge, R. X.; Ren, X.; Ren, J.; Yang, D. J.; Zhang, L. X.; Sun, X. P. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018, 8, 2236–2241.

53

He, X. B.; Zhao, X. R.; Yin, F. X.; Chen, B. H.; Li, G. R.; Yin, H. Q. NiS-FeS/N, S co-doped carbon hybrid: Synergistic effect between NiS and FeS facilitating electrochemical oxygen evolution reaction. Int. J. Energy Res. 2020, 44, 7057–7067.

File
12274_2021_4024_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 November 2021
Revised: 20 November 2021
Accepted: 24 November 2021
Published: 22 March 2022
Issue date: June 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is supported by the Natural Science Foundation of Hubei Province, China (Nos. 2019CFB569 and 2020CFB430), the Science and Technology Foundation for Creative Research Group of Hubei Normal University, China (No. 2019CZ08).

Return