Journal Home > Volume 15 , Issue 5

Graphene has been widely used for electrical energy storage and its performances could be further improved by heteroatom doping. How to prepare doped graphene efficiently and economically remains a significant challenge. Here, we propose a flash-assisted doping method to produce nitrogen- and sulfur-doped graphene (N-rGO and S-rGO). Using this method, graphene oxide (GO) is reduced to few-layer graphene (rGO) in seconds without the use of reductants, accompanied with a high doping efficiency. Particularly, the as-synthesized N-rGO with a high N content of 12.75 at.% used as potassium-ion battery (KIB) anode exhibits ultrafast K+-transport kinetics and superior K+-storage capability. Quantitative kinetics analysis and theoretical simulation are used to reveal the mechanism of transportation and storage of K+ in N-rGO.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flash-assisted doping graphene for ultrafast potassium transport

Show Author's information Yongzhi Zhang1,2Xianjue Chen2Wanglai Cen1Wenhao Ren2Haocheng Guo2Sicheng Wu2Yang Xiao2Sheng Chen2Yong Guo3Dan Xiao1( )Chuan Zhao2( )
Institute of New Energy and Low-Carbon Technology (INELT), Sichuan University, Chengdu 610065, China
School of Chemistry, University of New South Wales, Sydney 2052, Australia
College of Chemistry, Sichuan University, Chengdu 610064, China

Abstract

Graphene has been widely used for electrical energy storage and its performances could be further improved by heteroatom doping. How to prepare doped graphene efficiently and economically remains a significant challenge. Here, we propose a flash-assisted doping method to produce nitrogen- and sulfur-doped graphene (N-rGO and S-rGO). Using this method, graphene oxide (GO) is reduced to few-layer graphene (rGO) in seconds without the use of reductants, accompanied with a high doping efficiency. Particularly, the as-synthesized N-rGO with a high N content of 12.75 at.% used as potassium-ion battery (KIB) anode exhibits ultrafast K+-transport kinetics and superior K+-storage capability. Quantitative kinetics analysis and theoretical simulation are used to reveal the mechanism of transportation and storage of K+ in N-rGO.

Keywords: graphene, doping, anodes, potassium-ion batteries, flash

References(45)

1

Teng, F. Z.; McDonough, W. F.; Rudnick, R. L.; Dalpé, C.; Tomascak, P. B.; Chappell, B. W.; Gao, S. Lithium isotopic composition and concentration of the upper continental crust. Geochim. Cosmochim. Acta 2004, 68, 4167–4178.

2

Seyfried Jr, W. E.; Janecky, D. R.; Mottl, M. J. Alteration of the oceanic crust: Implications for geochemical cycles of lithium and boron. Geochim. Cosmochim. Acta 1984, 48, 557–569.

3

Luo, W.; Wan, J. Y.; Ozdemir, B.; Bao, W. Z.; Chen, Y. N.; Dai, J. Q.; Lin, H.; Xu, Y.; Gu, F.; Barone, V. et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671–7677.

4

Zhang, R. D.; Huang, J. J.; Deng, W. Z.; Bao, J. Z.; Pan, Y. L.; Huang, S. P.; Sun, C. F. Safe, low-cost, fast-kinetics and low-strain inorganic-open-framework anode for potassium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 16474–16479.

5

Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.

6

Zhao, J.; Zou, X. X.; Zhu, Y. J.; Xu, Y. H.; Wang, C. S. Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 2016, 26, 8103–8110.

7

Kim, H.; Yoon, G.; Lim, K.; Kang, K. A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries. Chem. Commun. 2016, 52, 12618–12621.

8

Li, X. J.; Lei, Y.; Qin, L.; Han, D.; Wang, H. W.; Zhai, D. Y.; Li, B. H.; Kang, F. Y. Mildly-expanded graphite with adjustable interlayer distance as high-performance anode for potassium-ion batteries. Carbon 2021, 172, 200–206.

9

Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

10

Liu, Y.; Lu, Y. X.; Xu, Y. S.; Meng, Q. S.; Gao, J. C.; Sun, Y. G.; Hu, Y. S.; Chang, B. B.; Liu, C. T.; Cao, A. M. Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 2020, 32, 2000505.

11

Yang, J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi, B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.

12

Cao, J. H.; Zhong, J.; Xu, H. J.; Li, S. Y.; Deng, H. L.; Wang, T.; Fan, L.; Wang, X. H.; Wang, L.; Zhu, J. et al. N/S co-doped carbon nanosheet bundles as high-capacity anode for potassium-ion battery. Nano Res. 2022, 15, 2040–2046.

13

Li, D. P.; Ren, X. H.; Ai, Q.; Sun, Q.; Zhu, L.; Liu, Y.; Liang, Z.; Peng, R. Q.; Si, P. C.; Lou, J. et al. Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1802386.

14

Li, D. P.; Sun, Q.; Zhang, Y. M.; Dai, X. Y.; Ji, F. J.; Li, K. K.; Yuan, Q. H.; Liu, X. J.; Ci, L. J. Fast and stable K-ion storage enabled by synergistic interlayer and pore-structure engineering. Nano Res. 2021, 14, 4502–4511.

15

Jian, Z. L.; Hwang, S. Y.; Li, Z. F.; Hernandez, A. S.; Wang, X. F.; Xing, Z. Y.; Su, D.; Ji, X. L. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700324.

16

Xing, Z. Y.; Qi, Y. T.; Jian, Z. L.; Ji, X. L. Polynanocrystalline graphite: A new carbon anode with superior cycling performance for K-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 4343–4351.

17

Wang, S. J.; Xiong, P.; Guo, X.; Zhang, J. Q.; Gao, X. C.; Zhang, F.; Tang, X.; Notten, P. H. L.; Wang, G. X. A stable conversion and alloying anode for potassium-ion batteries: A combined strategy of encapsulation and confinement. Adv. Funct. Mater. 2020, 30, 2001588.

18
Zhao, S. Q.; Liu, Z. C.; Xie, G. S.; Guo, X.; Guo, Z. Q.; Song, F.; Li, G. H.; Chen, C.; Xie, X. Q.; Zhang, N. et al. Achieving high-performance 3D K+-pre-intercalated Ti3C2Tx MXene for potassium-ion hybrid capacitors via regulating electrolyte solvation structure. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202112090.
19

Yoo, E.; Kim, J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277–2282.

20

Liang, K. L.; Li, M. F.; Hao, Y. K.; Yan, W. G.; Cao, M. H.; Fan, S. Q.; Han, W. P.; Su, J. Reduced graphene oxide with 3D interconnected hollow channel architecture as high-performance anode for Li/Na/K-ion storage. Chem. Eng. J. 2020, 394, 124956.

21

Wu, Z. S.; Ren, W. C.; Xu, L.; Li, F.; Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011, 5, 5463–5471.

22

Zhao, Y.; Sun, Z. T.; Yi, Y. Y.; Lu, C.; Wang, M. L.; Xia, Z.; Lian, X. Y.; Liu, Z. F.; Sun, J. Y. Precise synthesis of N-doped graphitic carbon via chemical vapor deposition to unravel the dopant functions on potassium storage toward practical K-ion batteries. Nano Res. 2021, 14, 1413–1420.

23

Ma, C. C.; Shao, X. H.; Cao, D. P. Nitrogen-doped graphenenanosheets as anode materials for lithium ion batteries: A first-principles study. J. Mater. Chem. 2012, 22, 8911–8915.

24

Zhou, L. J.; Hou, Z. F.; Wu, L. M. First-principles study of lithium adsorption and diffusion on graphene with point defects. J. Phys. Chem. C 2012, 116, 21780–21787.

25

Yao, F.; Güneş, F.; Ta, H. Q.; Lee, S. M.; Chae, S. J.; Sheem, K. Y.; Cojocaru, C. S.; Xie, S. S.; Lee, Y. H. Diffusion mechanism of lithium ion through basal plane of layered graphene. J. Am. Chem. Soc. 2012, 134, 8646–8654.

26

Share, K.; Cohn, A. P.; Carter, R.; Rogers, B.; Pint, C. L. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 2016, 10, 9738–9744.

27

Share, K.; Cohn, A. P.; Carter, R. E.; Pint, C. L. Mechanism of potassium ion intercalation staging in few layered graphene from in situ Raman spectroscopy. Nanoscale 2016, 8, 16435–16439.

28

Ju, Z. C.; Li, P. Z.; Ma, G. Y.; Xing, Z.; Zhuang, Q. C.; Qian, Y. T. Few layer nitrogen-doped graphene with highly reversible potassium Storage. Energy Storage Mater. 2018, 11, 38–46.

29

McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

30

Lee, S. W.; Mattevi, C.; Chhowalla, M.; Sankaran, R. M. Plasma-assisted reduction of graphene oxide at low temperature and atmospheric pressure for flexible conductor applications. J. Phys. Chem. Lett. 2012, 3, 772–777.

31

Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

32

Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25–29.

33

Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.

34

Li, Y. P.; Yang, C. H.; Zheng, F. H.; Ou, X.; Pan, Q. C.; Liu, Y. Z.; Wang, G. High pyridine N-doped porous carbon derived from metal-organic frameworks for boosting potassium-ion storage. J. Mater. Chem. A 2018, 6, 17959–17966.

35

Lin, Y. C.; Teng, P. Y.; Yeh, C. H.; Koshino, M.; Chiu, P. W.; Suenaga, K. Structural and chemical dynamics of pyridinic-nitrogen defects in graphene. Nano Lett. 2015, 15, 7408–7413.

36

Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. Influence of Li-ion kinetics in the cathodic performance of layered Li (Ni1/3Co1/3Mn1/3)O2. J. Electrochem. Soc. 2004, 151, A1324–A1332.

37

Wang, W.; Zhou, J. H.; Wang, Z. P.; Zhao, L. Y.; Li, P. H.; Yang, Y.; Yang, C.; Huang, H. X.; Guo, S. J. Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 2018, 8, 1701648.

38

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

39

Jian, Z. L.; Xing, Z. Y.; Bommier, C.; Li, Z. F.; Ji, X. L. Hard carbon microspheres: Potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 2016, 6, 1501874.

40

Liu, L.; Chen, Y.; Xie, Y. H.; Tao, P.; Li, Q. Y.; Yan, C. L. Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 2018, 28, 1801989.

41

Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S. L.; Zhou, T. F.; Mao, J. F.; Pang, W. K.; Guo, Z. P.; Li, A. et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801149.

42

Ding, J.; Zhang, H. L.; Zhou, H.; Feng, J.; Zheng, X. R.; Zhong, C.; Paek, E.; Hu, W. B.; Mitlin, D. Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 2019, 31, 1900429.

43
Yang, W. X.; Zhou, J. H.; Wang, S.; Zhang, W. Y.; Wang, Z. C.; Lv, F.; Wang, K.; Sun, Q.; Guo, S. J. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 2019, 12, 1605–1612.
44

Sonia, F. J.; Jangid, M. K.; Aslam, M.; Johari, P.; Mukhopadhyay, A. Enhanced and faster potassium storage in graphene with respect to graphite: A comparative study with lithium storage. ACS Nano 2019, 13, 2190–2204.

45

Qie, L.; Chen, W. M.; Xiong, X. Q.; Hu, C. C.; Zou, F.; Hu, P.; Huang, Y. H. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2015, 2, 1500195.

File
12274_2021_4023_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 September 2021
Revised: 04 November 2021
Accepted: 24 November 2021
Published: 14 January 2022
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the Excellent Young Scholar Research Foundation of Sichuan University (No. 2017SCU04A07) and Sichuan Science and Technology Program (No. 2019YFG0218). The authors thank Dr. Yibing Li from University of New South Wales for their help with analysis of research results and Prof. Li Wu from Analytical & Testing Centre Sichuan University for her help with Raman test. C. Z. thanks Australian Research Council for the award of Future Fellowship (No. FT170100224).

Return