Journal Home > Volume 15 , Issue 5

As an excellent clean medium for hydrogen storage and fuel cell applications, the photolysis of ammonia via localized surface plasmon could be invoked as a promising route towards significantly reducing the temperature for conventional thermolysis. Here, we explore the underlying microscopic mechanism of ultrafast carrier dynamics in plasmon-mediated NH3 photodecomposition at the single-molecular level using real-time time-dependent density functional theory. The NH3 molecule adsorbed on the tip of archetypal magic metal clusters represented by tetrahedral Ag20 and icosahedral Ag147, splits within a hundred femtoseconds upon laser pulse illumination. We found that the splitting of the first N-H bond is dominated by the intramolecular charge transfer driven by localized surface plasmon. Surprisingly, the phase of laser pulse could modulate the dynamics of charge transfer and thus affect the plasmon-induced bond breaking. These findings offer a new avenue for NH3 decomposition and provide in-depth insights in designing highly efficient plasmon-mediated photocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Plasmon-mediated photodecomposition of NH3 via intramolecular charge transfer

Show Author's information Yimin Zhang1,2,4Weite Meng2,3Daqiang Chen1,4Lili Zhang2Shunfang Li2( )Sheng Meng1,4( )
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232000, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

Abstract

As an excellent clean medium for hydrogen storage and fuel cell applications, the photolysis of ammonia via localized surface plasmon could be invoked as a promising route towards significantly reducing the temperature for conventional thermolysis. Here, we explore the underlying microscopic mechanism of ultrafast carrier dynamics in plasmon-mediated NH3 photodecomposition at the single-molecular level using real-time time-dependent density functional theory. The NH3 molecule adsorbed on the tip of archetypal magic metal clusters represented by tetrahedral Ag20 and icosahedral Ag147, splits within a hundred femtoseconds upon laser pulse illumination. We found that the splitting of the first N-H bond is dominated by the intramolecular charge transfer driven by localized surface plasmon. Surprisingly, the phase of laser pulse could modulate the dynamics of charge transfer and thus affect the plasmon-induced bond breaking. These findings offer a new avenue for NH3 decomposition and provide in-depth insights in designing highly efficient plasmon-mediated photocatalysts.

Keywords: time-dependent density functional theory, localized surface plasmon, ammonia photodecomposition, intramolecular charge transfer

References(66)

1

Schüth, F.; Palkovits, R.; Schlögl, R.; Su, D. S. Ammonia as a possible element in an energy infrastructure: Catalysts for ammonia decomposition. Energy Environ. Sci. 2012, 5, 6278–6289.

2

Lamb, K. E.; Dolan, M. D.; Kennedy, D. F. Ammonia for hydrogen storage: A review of catalytic ammonia decomposition and hydrogen separation and purification. Int. J. Hydrogen Energy 2019, 44, 3580–3593.

3

Guo, J. P.; Chen, P. Catalyst: NH3 as an energy carrier. Chem 2017, 3, 709–712.

4

Wu, H.; Cheng, Y. J.; Fan, Y. P.; Lu, X. M.; Li, L. X.; Liu, B. Z.; Li, B. J.; Lu, S. Y. Metal-catalyzed hydrolysis of ammonia borane: Mechanism, catalysts, and challenges. Int. J. Hydrogen Energy 2020, 45, 30325–30340.

5

Wu, H.; Cheng, Y. J.; Wang, B. Y.; Wang, Y.; Wu, M.; Li, W. D.; Liu, B. Z.; Lu, S. Y. Carbon dots-confined CoP-CoO nanoheterostructure with strong interfacial synergy triggered the robust hydrogen evolution from ammonia borane. J. Energy Chem. 2021, 57, 198–205.

6

Wu, H.; Wu, M.; Wang, B. Y.; Yong, X.; Liu, Y. S.; Li, B. J.; Liu, B. Z.; Lu, S. Y. Interface electron collaborative migration of Co-Co3O4/carbon dots: Boosting the hydrolytic dehydrogenation of ammonia borane. J. Energy Chem. 2020, 48, 43–53.

7

Wang, Z. Q.; Cai, Z. F.; Wei, Z. Highly active ruthenium catalyst supported on barium hexaaluminate for ammonia decomposition to COx-free hydrogen. ACS Sustainable Chem. Eng. 2019, 7, 8226–8235.

8

Tsai, W.; Vajo, J. J.; Weinberg, W. H. Inhibition by hydrogen of the heterogeneous decomposition of ammonia on platinum. J. Phys. Chem. 1985, 89, 4926–4932.

9

Tsai, W.; Weinberg, W. H. Steady-state decomposition of ammonia on the ruthenium(001) surface. J. Phys. Chem. 1987, 91, 5302–5307.

10

Wang, L.; Yi, Y. H.; Zhao, Y.; Zhang, R.; Zhang, J. L.; Guo, H. C. NH3 decomposition for H2 generation: Effects of cheap metals and supports on plasma-catalyst synergy. ACS Catal. 2015, 5, 4167–4174.

11

Hayashi, F.; Toda, Y.; Kanie, Y.; Kitano, M.; Inoue, Y.; Yokoyama, T.; Hara, M.; Hosono, H. Ammonia decomposition by ruthenium nanoparticles loaded on inorganic electride C12A7: e. Chem. Sci. 2013, 4, 3124–3130.

12

Yeo, S. C.; Han, S. S.; Lee, H. M. Mechanistic investigation of the catalytic decomposition of ammonia (NH3) on an Fe(100) surface: A DFT study. J. Phys. Chem. C 2014, 118, 5309–5316.

13

Guo, W.; Vlachos, D. G. Patched bimetallic surfaces are active catalysts for ammonia decomposition. Nat. Commun. 2015, 6, 8619.

14

Hansgen, D. A.; Vlachos, D. G.; Chen, J. G. Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nat. Chem. 2010, 2, 484–489.

15

Zheng, W. Q.; Cotter, T. P.; Kaghazchi, P.; Jacob, T.; Frank, B.; Schlichte, K.; Zhang, W.; Su, D. S.; Schüth, F.; Schlögl, R. Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition. J. Am. Chem. Soc. 2013, 135, 3458–3464.

16

Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

17

Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419–422.

18

Xu, H. X.; Bjerneld, E. J.; Käll, M.; Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 1999, 83, 4357–4360.

19

Robatjazi, H.; Bahauddin, S. M.; Doiron, C.; Thomann, I. Direct plasmon-driven photoelectrocatalysis. Nano Lett. 2015, 15, 6155–6161.

20

Christopher, P.; Xin, H. L.; Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 2011, 3, 467–472.

21

Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.

22

Linic, S.; Christopher, P.; Xin, H. L.; Marimuthu, A. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. Acc. Chem. Res. 2013, 46, 1890–1899.

23

Swearer, D. F.; Zhao, H. Q.; Zhou, L. N.; Zhang, C.; Robatjazi, H.; Martirez, J. M. P.; Krauter, C. M.; Yazdi, S.; McClain, M. J.; Ringe, E. et al. Heterometallic antenna-reactor complexes for photocatalysis. Proc. Natl. Acad. Sci. USA 2016, 113, 8916–8920.

24

Hartland, G. V. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 2011, 111, 3858–3887.

25

Giannini, V.; Fernández-Domínguez, A. I.; Heck, S. C.; Maier, S. A. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 2011, 111, 3888–3912.

26

Yang, H.; Wang, Z. H.; Zheng, Y. Y.; He, L. Q.; Zhan, C.; Lu, X. H.; Tian, Z. Q.; Fang, P. P.; Tong, Y. X. Tunable wavelength enhanced photoelectrochemical cells from surface plasmon resonance. J. Am. Chem. Soc. 2016, 138, 16204–16207.

27

Sprague-Klein, E. A.; Negru, B.; Madison, L. R.; Coste, S. C.; Rugg, B. K.; Felts, A. M.; McAnally, M. O.; Banik, M.; Apkarian, V. A.; Wasielewski, M. R. et al. Photoinduced plasmon-driven chemistry in trans-1, 2-bis(4-pyridyl)ethylene gold nanosphere oligomers. J. Am. Chem. Soc. 2018, 140, 10583–10592.

28

Zhang, H. W.; Itoi, T.; Konishi, T.; Izumi, Y. Dual photocatalytic roles of light: Charge separation at the band gap and heat via localized surface plasmon resonance to convert CO2 into CO over silver-zirconium oxide. J. Am. Chem. Soc. 2019, 141, 6292–6301.

29

Hu, C. Y.; Chen, X.; Jin, J. B.; Han, Y.; Chen, S. M.; Ju, H. X.; Cai, J.; Qiu, Y. R.; Gao, C.; Wang, C. M. et al. Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions. J. Am. Chem. Soc. 2019, 141, 7807–7814.

30

Rao, V. G.; Aslam, U.; Linic, S. Chemical requirement for extracting energetic charge carriers from plasmonic metal nanoparticles to perform electron-transfer reactions. J. Am. Chem. Soc. 2019, 141, 643–647.

31

Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

32

Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.

33

Thrall, E. S.; Steinberg, A. P.; Wu, X. M.; Brus, L. E. The role of photon energy and semiconductor substrate in the plasmon-mediated photooxidation of citrate by silver nanoparticles. J. Phys. Chem. C 2013, 117, 26238–26247.

34

Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240–247.

35

Mukherjee, S.; Zhou, L. N.; Goodman, A. M.; Large, N.; Ayala-Orozco, C.; Zhang, Y.; Nordlander, P.; Halas, N. J. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 2014, 136, 64–67.

36

Zhang, Y.; Nelson, T.; Tretiak, S.; Guo, H.; Schatz, G. C. Plasmonic hot-carrier-mediated tunable photochemical reactions. ACS Nano 2018, 12, 8415–8422.

37

Yan, L.; Ding, Z. J.; Song, P.; Wang, F. W.; Meng, S. Plasmon-induced dynamics of H2 splitting on a silver atomic chain. Appl. Phys. Lett. 2015, 107, 083102.

38

Yan, L.; Wang, F. W.; Meng, S. Quantum mode selectivity of plasmon-induced water splitting on gold nanoparticles. ACS Nano 2016, 10, 5452–5458.

39

Yan, J.; Jacobsen, K. W.; Thygesen, K. S. First-principles study of surface plasmons on Ag(111) and H/Ag(111). Phys. Rev. B 2011, 84, 235430.

40

Kale, M. J.; Avanesian, T.; Xin, H. L.; Yan, J.; Christopher, P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. Nano Lett. 2014, 14, 5405–5412.

41

Kale, M. J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4, 116–128.

42

Kumar, P. V.; Rossi, T. P.; Marti-Dafcik, D.; Reichmuth, D.; Kuisma, M.; Erhart, P.; Puska, M. J.; Norris, D. J. Plasmon-induced direct hot-carrier transfer at metal-acceptor interfaces. ACS Nano 2019, 13, 3188–3195.

43

Zhou, L.; Swearer, D. F.; Zhang, C.; Robatjazi, H.; Zhao, H. Q.; Henderson, L.; Dong, L. L.; Christopher, P.; Carter, E. A.; Nordlander, P. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 2018, 362, 69–72.

44

Bao, J. L.; Carter, E. A. Surface-plasmon-induced ammonia decomposition on copper: Excited-state reaction pathways revealed by embedded correlated wavefunction theory. ACS Nano 2019, 13, 9944–9957.

45

Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712.

46

Bradford, M. C. J.; Fanning, P. E.; Vannice, M. A. Kinetics of NH3 decomposition over well dispersed Ru. J. Catal. 1997, 172, 479–484.

47

Ganley, J. C.; Thomas, F.; Seebauer, E. G.; Masel, R. I. A priori catalytic activity correlations: The difficult case of hydrogen production from ammonia. Catal. Lett. 2004, 96, 117–122.

48

Aikens, C. M.; Li, S. Z.; Schatz, G. C. From discrete electronic states to plasmons: TDDFT optical absorption properties of Agn(n= 10, 20, 35, 56, 84, 120) tetrahedral clusters. J. Phys. Chem. C 2008, 112, 11272–11279.

49

Song, P.; Nordlander, P.; Gao, S. W. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. J. Chem. Phys. 2011, 134, 074701.

50

Yan, L.; Xu, J. Y.; Wang, F. W.; Meng, S. Plasmon-induced ultrafast hydrogen production in liquid water. J. Phys. Chem. Lett. 2018, 9, 63–69.

51

Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Yoshida, N.; Watanabe, T. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 2008, 130, 1676–1680.

52

Adleman, J. R.; Boyd, D. A.; Goodwin, D. G.; Psaltis, D. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 2009, 9, 4417–4423.

53

Golubev, A. A.; Khlebtsov, B. N.; Rodriguez, R. D.; Chen, Y.; Zahn, D. R. T. Plasmonic heating plays a dominant role in the plasmon-induced photocatalytic reduction of 4-nitrobenzenethiol. J. Phys. Chem. C 2018, 122, 5657–5663.

54

Townsend, E.; Bryant, G. W. Plasmonic properties of metallic nanoparticles: The effects of size quantization. Nano Lett. 2012, 12, 429–434.

55

Townsend, E.; Bryant, G. W. Which resonances in small metallic nanoparticles are plasmonic? J. Opt. 2014, 16, 114022.

56

Ma, J.; Wang, Z.; Wang, L. W. Interplay between plasmon and single-particle excitations in a metal nanocluster. Nat. Commun. 2015, 6, 10107.

57

Kazuma, E.; Jung, J.; Ueba, H.; Trenary, M.; Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 2018, 360, 521–526.

58

Castro, A.; Appel, H.; Oliveira, M.; Rozzi, C. A.; Andrade, X.; Lorenzen, F.; Marques, M. A. L.; Gross, E. K. U.; Rubio, A. Octopus: A tool for the application of time-dependent density functional theory. Phys. Status Solidi (B) 2006, 243, 2465–2488.

59

Andrade, X.; Alberdi-Rodriguez, J.; Strubbe, D. A.; Oliveira, M. J. T.; Nogueira, F.; Castro, A.; Muguerza, J.; Arruabarrena, A.; Louie, S. G.; Aspuru-Guzik, A. et al. Time-dependent density-functional theory in massively parallel computer architectures: The OCTOPUS project. J. Phys. :Condens. Matter 2012, 24, 233202.

60

Andrade, X.; Strubbe, D.; De Giovannini, U.; Larsen, A. H.; Oliveira, M. J. T.; Alberdi-Rodriguez, J.; Varas, A.; Theophilou, I.; Helbig, N.; Verstraete, M. J. et al. Real-space grids and the octopus code as tools for the development of new simulation approaches for electronic systems. Phys. Chem. Chem. Phys. 2015, 17, 31371–31396.

61

Meng, S.; Kaxiras, E. Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations. J. Chem. Phys. 2008, 129, 054110.

62

Ma, W.; Zhang, J.; Yan, L.; Jiao, Y.; Gao, Y.; Meng, S. Recent progresses in real-time local-basis implementation of time dependent density functional theory for electron-nucleus dynamics. Comput. Mater. Sci. 2016, 112, 478–486.

63

Lian, C.; Guan, M. X.; Hu, S. Q.; Zhang, J.; Meng, S. Photoexcitation in solids: First-principles quantum simulations by real-time TDDFT (Adv. Theory Simul. 8/2018). Adv. Theory Simul. 2018, 1, 1870018.

64

Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006.

65

Yabana, K.; Bertsch, G. F. Time-dependent local-density approximation in real time. Phys. Rev. B 1996, 54, 4484–4487.

66

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

File
12274_2021_4021_MOESM1_ESM.pdf (675 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 September 2021
Revised: 03 November 2021
Accepted: 24 November 2021
Published: 24 December 2021
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We acknowledge financial support from MOST, the National Key Research and Development Project (No. 2021YFA1400200), the National Natural Science Foundation of China (NSFC) (Nos. 12025407, 11774396, 91850120, 11934003, and 11674289), and CAS (XDB330301).

Return