AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Macroscale superlubricity under ultrahigh contact pressure in the presence of layered double hydroxide nanosheets

Kunpeng Wang1Lei Liu1Aisheng Song1Tianbao Ma1Hongdong Wang1,2( )Jianbin Luo1( )Yuhong Liu1( )
State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
School of Mechatronic Engineering, Shanghai University, Shanghai 200444, China
Show Author Information

Graphical Abstract

Macroscale superlubricity under ultrahigh contact pressure enabled by the combination of layered double hydroxide nanosheets with ionic liquid.

Abstract

It is difficult to achieve macroscale superlubricity under high contact pressures and high normal loads. Layered double hydroxide (LDH) nanoadditives were introduced into an ionic liquid alcohol solution (IL(as)) with contact pressures up to 1.044 GPa, which resulted in a friction coefficient (COF) of 0.004 and a robust superlubricity state lasting for 2 h. Compared with the LDH particles (LDH-Ps) with ca. 90-nm widths and 18-nm thickness, micron-scale LDH nanosheet (LDH-N) additives with ca. 1.5-µm width and 6-nm thickness increased the load-bearing capacity by approximately three times during superlubricity. The lubricant film thickness and the ultrathin longitudinal dimension of the LDH-N additives did not influence the continuity of the fluid film on the contact surface. These improvements resulted from the protective adsorption layer and ion distribution formed on the contact interface, as revealed by detailed surface analyses and simulation studies. In particular, the sliding energy barrier and Bader charge calculation revealed that weak shear sliding between the nanosheet and the solid surface formed easily and the anions in the liquid adsorbed on the solid surface exhibited electrostatic repulsion forces, which generated stable tribological properties synergistically. This research provides a novel method for obtaining macroscale superlubricity for practical industrial applications.

Electronic Supplementary Material

Download File(s)
12274_2021_4020_MOESM1_ESM.pdf (2 MB)

References

1

Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284.

2

Luo, J. B. Investigation on the origin of friction and superlubricity. Chin. Sci. Bull. 2020, 65, 2966–2978.

3

Gong, Z. B.; Jia, X. L.; Ma, W.; Zhang, B.; Zhang, J. Y. Hierarchical structure graphitic-like/MoS2 film as superlubricity material. Appl. Surf. Sci. 2017, 413, 381–386.

4

Büch, H.; Rossi, A.; Forti, S.; Convertino, D.; Tozzini, V.; Coletti, C. Superlubricity of epitaxial monolayer WS2 on graphene. Nano Res. 2018, 11, 5946–5956.

5

Kuwahara, T.; Moras, G.; Moseler, M. Friction regimes of water-lubricated diamond (111): Role of interfacial ether groups and tribo-induced aromatic surface reconstructions. Phys. Rev. Lett. 2017, 119, 096101.

6

Marchetto, D.; Restuccia, P.; Ballestrazzi, A.; Righi, M. C.; Rota, A.; Valeri, S. Surface passivation by graphene in the lubrication of iron: A comparison with bronze. Carbon 2017, 116, 375–380.

7

Arakawa, K. Stick-slip frictional instabilities of rubbers on oiled glass surfaces. Tribol. Int. 2019, 131, 11–14.

8

Dong, C. L.; Mo, J. L.; Yuan, C. Q.; Bai, X. Q.; Yu, T. Vibration and noise behaviors during stick-slip friction. Tribol. Lett. 2019, 67, 103.

9

Tian, K. W.; Goldsby, D. L.; Carpick, R. W. Rate and state friction relation for nanoscale contacts: Thermally activated Prandtl–Tomlinson model with chemical aging. Phys. Rev. Lett. 2018, 120, 186101.

10

Sircar, A.; Patra, P. K. A simple generalization of Prandtl–Tomlinson model to study nanoscale rolling friction. J. Appl. Phys. 2020, 127, 135102.

11

Tang, G. B.; Wu, Z. B.; Su, F. H.; Wang, H. D.; Xu, X.; Li, Q.; Ma, G. Z.; Chu, P. K. Macroscale superlubricity on engineering steel in the presence of black phosphorus. Nano Lett. 2021, 21, 5308–5315.

12

Ren, X. Y.; Yang, X.; Xie, G. X.; He, F.; Wang, R.; Zhang, C. H.; Guo, D.; Luo, J. B. Superlubricity under ultrahigh contact pressure enabled by partially oxidized black phosphorus nanosheets. npj 2D Mater. Appl. 2021, 5, 44.

13

Fan, K.; Liu, X. K.; Liu, Y.; Li, Y.; Chen, Y.; Meng, Y. Q.; Liu, X. Y.; Feng, W.; Luo, L. B. Covalent functionalization of fluorinated graphene through activation of dormant radicals for water-based lubricants. Carbon 2020, 167, 826–834.

14

Wang, W.; Xie, G. X.; Luo, J. B. Superlubricity of black phosphorus as lubricant additive. ACS Appl. Mater. Interfaces 2018, 10, 43203–43210.

15

Meng, Y. G.; Xu, J.; Jin, Z. M.; Prakash, B.; Hu, Y. Z. A review of recent advances in tribology. Friction 2020, 8, 221–300.

16

Luo, J. B.; Zhou, X. Superlubricitive engineering—Future industry nearly getting rid of wear and frictional energy consumption. Friction 2020, 8, 643–665.

17

Wang, H. D.; Liu, Y. H.; Chen, Z.; Wu, B. B.; Xu, S. L.; Luo, J. B. Layered double hydroxide nanoplatelets with excellent tribological properties under high contact pressure as water-based lubricant additives. Sci. Rep. 2016, 6, 22748.

18

Liu, L.; Zhang, Y.; Qiao, Y. J.; Tan, S. C.; Feng, S. F.; Ma, J.; Liu, Y. H.; Luo, J. B. 2D metal-organic frameworks with square grid structure: A promising new-generation superlubricating material. Nano Today 2021, 40, 101262.

19

Zhai, W. Z.; Zhou, K. Nanomaterials in superlubricity. Adv. Funct. Mater. 2019, 29, 1806395.

20

Zhai, W. Z.; Bai, L. C.; Zhou, R. H.; Fan, X. L.; Kang, G. Z.; Liu, Y.; Zhou, K. Recent progress on wear-resistant materials: Designs, properties, and applications. Adv. Sci. 2021, 8, 2003739.

21

Zhang, C. X.; Liu, Y. H.; Wen, S. Z.; Wang, S. Poly(vinylphosphonic acid) (PVPA) on titanium alloy acting as effective cartilage-like superlubricity coatings. ACS Appl. Mater. Interfaces 2014, 6, 17571–17578.

22

Zhang, C. X.; Liu, Z. F.; Liu, Y. H.; Cheng, Q.; Yang, C. B.; Cai, L. G. Investigation of the mechanisms for stable superlubricity of poly(vinylphosphonic acid) (PVPA) coatings affected by lubricant. Friction 2016, 4, 303–312.

23

Arad, S.; Rapoport, L.; Moshkovich, A.; van Moppes, D.; Karpasas, M.; Golan, R.; Golan, Y. Superior biolubricant from a species of red microalga. Langmuir 2006, 22, 7313–7317.

24

Yao, Y.; Xu, Y.; Fan, X. Q.; Zhu, M. H.; Liu, G. F. Tribological properties of spherical and mesoporous NiAl particles as ionic liquid additives. Friction 2020, 8, 384–395.

25

Amann, T.; Gatti, F.; Oberle, N.; Kailer, A.; Rühe, J. Galvanically induced potentials to enable minimal tribochemical wear of stainless steel lubricated with sodium chloride and ionic liquid aqueous solution. Friction 2018, 6, 230–242.

26

Ge, X. Y.; Li, J. J.; Zhang, C. H.; Liu, Y. H.; Luo, J. B. Superlubricity and antiwear properties of in situ-formed ionic liquids at ceramic interfaces induced by tribochemical reactions. ACS Appl. Mater. Interfaces 2019, 11, 6568–6574.

27

Ge, X. Y.; Li, J. J.; Zhang, C. H.; Wang, Z. N.; Luo, J. B. Superlubricity of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid induced by tribochemical reactions. Langmuir 2018, 34, 5245–5252.

28

Wang, W.; He, Y. Y.; Zhao, J.; Mao, J. Y.; Hu, Y. T.; Luo, J. B. Optimization of groove texture profile to improve hydrodynamic lubrication performance: Theory and experiments. Friction 2020, 8, 83–94.

29

Ge, X. Y.; Li, J. J.; Wang, H. D.; Zhang, C. H.; Liu, Y. H.; Luo, J. B. Macroscale superlubricity under extreme pressure enabled by the combination of graphene-oxide nanosheets with ionic liquid. Carbon 2019, 151, 76–83.

30

Wang, H. D.; Liu, Y. H.; Liu, W. R.; Liu, Y. M.; Wang, K. P.; Li, J. J.; Ma, T. B.; Eryilmaz, O. L.; Shi, Y. J.; Erdemir, A. et al. Superlubricity of polyalkylene glycol aqueous solutions enabled by ultrathin layered double hydroxide nanosheets. ACS Appl. Mater. Interfaces 2019, 11, 20249–20256.

31

Wang, H. D.; Liu, Y. H.; Liu, W. R.; Wang, R.; Wen, J. G.; Sheng, H. P.; Peng, J. F.; Erdemir, A.; Luo, J. B. Tribological behavior of NiAl-layered double hydroxide nanoplatelets as oil-based lubricant additives. ACS Appl. Mater. Interfaces 2017, 9, 30891–30899.

32

Wang, H. D.; Liu, Y. H.; Guo, F. M.; Sheng, H. P.; Xia, K. L.; Liu, W. R.; Wen, J. G.; Shi, Y. J.; Erdemir, A.; Luo, J. B. Catalytically active oil-based lubricant additives enabled by calcining Ni–Al layered double hydroxides. J. Phys. Chem. Lett. 2020, 11, 113–120.

33

Wang, Y. Y.; Qiao, M.; Li, Y. F.; Wang, S. Y. Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction. Small 2018, 14, 1800136.

34

Wang, H.; Yang, Z. X.; Meng, F. Q.; Yin, W. Z.; Wu, Y. Effects of preparation methods on the property and hydrodesulfurization activity of NiAlZrW catalysts derived from tungstate intercalated NiAlZr layered double hydroxides. Fuel 2018, 228, 332–341.

35

Shi, W.; Hu, J.; Ni, Z. M.; Li, Y.; Liu, J. Influence of interlayer water content on supermolecular interaction of copper-iron layered double hydroxides. Acta Phys. -Chim. Sin. 2012, 28, 1869–1876.

36

Iyi, N.; Matsumoto, T.; Kaneko, Y.; Kitamura, K. A novel synthetic route to layered double hydroxides using hexamethylenetetramine. Chem. Lett. 2004, 33, 1122–1123.

37

Iyi, N.; Tamura, K.; Yamada, H. One-pot synthesis of organophilic layered double hydroxides (LDHs) containing aliphatic carboxylates: Extended “homogeneous precipitation” method. J. Colloid Interface Sci. 2009, 340, 67–73.

38

Blau, P. J. The significance and use of the friction coefficient. Tribol. Int. 2001, 34, 585–591.

39

Smith, M.; Scudiero, L.; Espinal, J.; McEwen, J. S.; Garcia-Perez, M. Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. Carbon 2016, 110, 155–171.

40

Petit, T.; Arnault, J. C.; Girard, H. A.; Sennour, M.; Bergonzo, P. Early stages of surface graphitization on nanodiamond probed by X-ray photoelectron spectroscopy. Phys. Rev. B 2011, 84, 233407.

41

Zheng, L. P.; Zhang, H.; Cheng, P. F.; Ma, Q.; Liu, J. J.; Nie, J.; Feng, W. F.; Zhou, Z. B. Li[(FSO2)(n-C4F9SO2)N] versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: A comprehensive understanding with chemical, electrochemical and XPS analysis. Electrochim. Acta 2016, 196, 169–188.

42

Shao, M. W.; Cheng, L.; Zhang, X. H.; Ma, D. D. D.; Lee, S. T. Excellent photocatalysis of HF-treated silicon nanowires. J. Am. Chem. Soc. 2009, 131, 17738–17739.

43

Sen, F. G.; Meng-Burany, X.; Lukitsch, M. J.; Qi, Y.; Alpas, A. T. Low friction and environmentally stable diamond-like carbon (DLC) coatings incorporating silicon, oxygen and fluorine sliding against aluminum. Surf. Coat. Technol. 2013, 215, 340–349.

44

Ram, P.; Singh, J.; Ramamohan, T. R.; Venkatachalam, S.; Sundarsingh, V. P. Surface properties of electrodeposited a-Si: C: H: F thin films by X-ray photoelectron spectroscopy. J. Mater. Sci. 1997, 32, 6305–6310.

45

Han, T. Y.; Zhang, C. H.; Chen, X. C.; Li, J. J.; Wang, W. Q.; Luo, J. B. Contribution of a tribo-induced silica layer to macroscale superlubricity of hydrated ions. J. Phys. Chem. C 2019, 123, 20270–20277.

46

Yang, W. S.; Kim, Y. M.; Liu, P. K. T.; Sahimi, M.; Tsotsis, T. T. A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide. Chem. Eng. Sci. 2002, 57, 2945–2953.

47

Kloprogge, J. T.; Wharton, D.; Hickey, L.; Frost, R. L. Infrared and Raman study of interlayer anions CO32−, NO3, SO42− and ClO4 in Mg/Al hydrotalcite. Am. Mineralogist 2015, 87, 623–629.

48

Inkpen, M. S.; Liu, Z. F.; Li, H. X.; Campos, L. M.; Neaton, J. B.; Venkataraman, L. Non-chemisorbed gold-sulfur binding prevails in self-assembled monolayers. Nat. Chem. 2019, 11, 351–358.

49

Wang, K. P.; Wu, H. C.; Wang, H. D.; Liu, Y. H. Superior extreme pressure properties of different layer LDH nanoplatelets used as boundary lubricants. Appl. Surf. Sci. 2020, 530, 147203.

50

Hamrock, B. J.; Dowson, D. Isothermal elastohydrodynamic lubrication of point contacts: Part III-fully flooded results. J. Lubrication Technol. 1977, 99, 264–275.

51

Zhang, B. Z.; Cheng, Z. W.; Lu, Z. B.; Zhang, G. A.; Ma, F. Atomic-scale rolling friction and charge-transfer mechanism: An integrated study of physical deductions and DFT simulations. J. Phys. Chem. C 2020, 124, 8431–8438.

52

Wolloch, M.; Levita, G.; Restuccia, P.; Righi, M. C. Interfacial charge density and its connection to adhesion and frictional forces. Phys. Rev. Lett. 2018, 121, 026804.

53

Song, A. S.; Gao, L.; Zhang, J.; Liu, X.; Hu, Y. Z.; Ma, T. B.; Zheng, Q. S.; Luo, J. B. Achieving a superlubricating ohmic sliding electrical contact via a 2D heterointerface: A computational investigation. Nanoscale 2020, 12, 7857–7863.

54

Zhang, X.; Wang, S. Q. First-principles investigation of the microscopic mechanism of the physical and chemical mixed adsorption of graphene on metal surfaces. RSC Adv. 2019, 9, 32712–32720.

55

Li, Q.; García-Muelas, R.; López, N. Microkinetics of alcohol reforming for H2 production from a FAIR density functional theory database. Nat. Commun. 2018, 9, 526.

56

Berman, D.; Erdemir, A.; Sumant, A. V. Approaches for achieving superlubricity in two-dimensional materials. ACS Nano 2018, 12, 2122–2137.

Nano Research
Pages 4700-4709
Cite this article:
Wang K, Liu L, Song A, et al. Macroscale superlubricity under ultrahigh contact pressure in the presence of layered double hydroxide nanosheets. Nano Research, 2022, 15(5): 4700-4709. https://doi.org/10.1007/s12274-021-4020-9
Topics:

913

Views

11

Crossref

12

Web of Science

11

Scopus

2

CSCD

Altmetrics

Received: 25 August 2021
Revised: 28 October 2021
Accepted: 10 November 2021
Published: 02 February 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return