Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The application of semiconductors-based photocatalysts in organic transformation has been limited by the low light utilization efficiency and the rapid recombination of photo-induced charge carriers. In this paper, we have successfully fabricated a hollow cuboctahedral nanostructure (CNNCH), which is composed of N-doped carbon layer and CuO/NiO p-n heterojunctions. The hollow structure in CNNCH can effectively favor the light utilization through the multiple light reflection and scattering. The separation of photo-induced charge carriers can be highly improved by the exitence of charge transfer pathways between the p-n heterojunctions and semiconductor/N-doped carbon layer interfaces. Due to the above advantages, hollow cuboctahedral CNNCH as the photocatalyst has behaved high performance towards the photocatalytic cross-dehydrogenative coupling reaction.
Huang, X. B.; Zhang, K. Y.; Peng, B. X.; Wang, G.; Muhler, M.; Wang, F. Ceria-based materials for thermocatalytic and photocatalytic organic synthesis. ACS Catal. 2021, 11, 9618–9678.
Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Visible-light photocatalysis: Does it make a difference in organic synthesis. Angew. Chem., Int. Ed. 2018, 57, 10034–10072.
Shiraishi, Y.; Hirai, T. Selective organic transformations on titanium oxide-based photocatalysts. J. Photochem. Photobiol. C 2008, 9, 157–170.
Konstantinou, I. K.; Albanis, T. A. Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: Intermediates and degradation pathways. Appl. Catal. B:Environ. 2003, 42, 319–335.
Anwer, H.; Mahmood, A.; Lee, J.; Kim, K. H.; Park, J. W.; Yip, A. C. K. Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Res. 2019, 12, 955–972.
Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.
Yang, H.; Bright, J.; Kasani, S.; Zheng, P.; Musho, T.; Chen, B. L.; Huang, L.; Wu, N. Metal-organic framework coated titanium dioxide nanorod array p-n heterojunction photoanode for solar water-splitting. Nano Res. 2019, 12, 643–650.
Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.
Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.
Zhao, H. N.; Xing, Z. P.; Su, S. Y.; Song, S. J.; Li, Z. Z.; Zhou, W. Gear-shaped mesoporous NH2-MIL-53(Al)/CdS P-N heterojunctions as efficient visible-light-driven photocatalysts. Appl. Catal. B:Environ. 2021, 291, 120106.
Hua, E. B.; Jin, S.; Wang, X. R.; Ni, S.; Liu, G.; Xu, X. X. Ultrathin 2D type-II p-n heterojunctions La2Ti2O7/In2S3 with efficient charge separations and photocatalytic hydrogen evolution under visible light illumination. Appl. Catal. B:Environ. 2019, 245, 733–742.
Hou, H. L.; Zeng, X. K.; Zhang, X. W. 2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications. Sci. China Mater. 2020, 63, 2119–2152.
Rawal, S. B.; Bera, S.; Lee, D.; Jang, D. J.; Lee, W. I. Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: Effect of their relative energy band positions on the photocatalytic efficiency. Catal. Sci. Technol. 2013, 3, 1822–1830.
Zhang, Z. J.; Wang, W. Z.; Wang, L.; Sun, S. M. Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: A case study on Bi2S3/Bi2WO6. ACS Appl. Mater. Interfaces 2012, 4, 593–597.
Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem., Int. Ed. 2020, 59, 5218–5225.
Fu, J. W.; Xu, Q. L.; Low, J.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B:Environ. 2019, 243, 556–565.
Yan, J. Q.; Wu, H.; Chen, H.; Zhang, Y. X.; Zhang, F. X.; Liu, S. F. Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl. Catal. B:Environ. 2016, 191, 130–137.
Marschall, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 2014, 24, 2421–2440.
Lv, Y.; Yue, L.; Khan, I. M.; Zhou, Y.; Cao, W. B.; Niazi, S.; Wang, Z. P. Fabrication of magnetically recyclable yolk–shell Fe3O4@TiO2 nanosheet/Ag/g-C3N4 microspheres for enhanced photocatalytic degradation of organic pollutants. Nano Res. 2021, 14, 2363–2371.
Yuan, Y. S.; Sun, L. M.; Zeng, S. Y.; Zhan, W. W.; Wang, X. J.; Han, X. G. Modulating the charge-transfer step of a p-n heterojunction with nitrogen-doped carbon: A promising strategy to improve photocatalytic performance. Chem. -Eur. J. 2020, 26, 921–926.
Lim, W. Y.; Wu, H.; Lim, Y. F.; Ho, G. W. Facilitating the charge transfer of ZnMoS4/CuS p-n heterojunctions through ZnO intercalation for efficient photocatalytic hydrogen generation. J. Mater. Chem. A 2018, 6, 11416–11423.
Zeng, Y. S.; Xue, J. W.; He, M.; Li, C. H.; Zhu, W. J.; Li, S. K. Investigation of interfacial charge transfer in CuxO@TiO2 heterojunction nanowire arrays towards highly efficient solar water splitting. Electrochim. Acta 2021, 367, 137426.
Xie, C.; Li, F. Z.; Zeng, L. H.; Luo, L. B.; Wang, L.; Wu, C. Y.; Jie, J. S. Surface charge transfer induced p-CdS nanoribbon/n-Si heterojunctions as fast-speed self-driven photodetectors. J. Mater. Chem. C 2015, 3, 6307–6313.
Taha, A. A.; Li, F. T. Porous WO3-carbon nanofibers: High-performance and recyclable visible light photocatalysis. Catal. Sci. Technol. 2014, 4, 3601–3605.
Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic carbon-nanotube-TiO2 composites. Adv. Mater. 2009, 21, 2233–2239.
Peng, Y.; Kang, S.; Hu, Z. F. Pt nanoparticle-decorated CdS photocalysts for CO2 reduction and H2 evolution. ACS Appl. Nano Mater. 2020, 3, 8632–8639.
Boerigter, C.; Aslam, U.; Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 2016, 10, 6108–6115.
Ding, D. W.; Liu, K.; He, S. N.; Gao, C. B.; Yin, Y. D. Ligand-exchange assisted formation of Au/TiO2 schottky contact for visible-light photocatalysis. Nano Lett. 2014, 14, 6731–6736.
Huang, J. L.; Liu, J.; Tian, L. N.; Li, X. L.; Ma, X. Q.; Yu, X.; Guo, Q. H.; Zhao, J. W. Ultrathin carbon-coated Zr3+-ZrO2 nanostructures for efficient visible light photocatalytic antibiotic elimination. Chem. Eng. J. 2021, 412, 128621.
Leary, R.; Westwood, A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 2011, 49, 741–772.
Sun, L. M.; Zhuang, Y.; Yuan, Y. S.; Zhan, W. W.; Wang, X. J.; Han, X. G.; Zhao, Y. L. Nitrogen-doped carbon-coated CuO-In2O3 p-n heterojunction for remarkable photocatalytic hydrogen evolution. Adv. Energy Mater. 2019, 9, 1902839.
Tong, X. L.; Yang, P.; Wang, Y. W.; Qin, Y.; Guo, X. Y. Enhanced photoelectrochemical water splitting performance of TiO2 nanotube arrays coated with an ultrathin nitrogen-doped carbon film by molecular layer deposition. Nanoscale 2014, 6, 6692–6700.
Periyasamy, M.; Kar, A. Modulating the properties of SnO2 nanocrystals: Morphological effects on structural, photoluminescence, photocatalytic, electrochemical and gas sensing properties. J. Mater. Chem. C 2020, 8, 4604–4635.
Jiang, E. H.; Song, N.; Che, G. B.; Liu, C. B.; Dong, H. J.; Yang, L. L. Construction of a Z-scheme MoS2/CaTiO3 heterostructure by the morphology-controlled strategy towards enhancing photocatalytic activity. Chem. Eng. J. 2020, 399, 125721.
She, P.; Rao, H.; Guan, B. Y.; Qin, J. S.; Yu, J. H. Spatially separated bifunctional cocatalysts decorated on hollow-structured TiO2 for enhanced photocatalytic hydrogen generation. ACS Appl. Mater. Interfaces 2020, 12, 23356–23362.
Xiao, M.; Wang, Z. L.; Lyu, M.; Luo, B.; Wang, S. C.; Liu, G.; Cheng, H. M.; Wang, L. Z. Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 2019, 31, 1801369.
Mao, D. J.; Yuan, J. L.; Qu, X. L.; Sun, C.; Yang, S. G.; He, H. Size tunable Bi3O4Br hierarchical hollow spheres assembled with {001}-facets exposed nanosheets for robust photocatalysis against phenolic pollutants. J. Catal. 2019, 369, 209–221.
Li, H. X.; Bian, Z. F.; Zhu, J.; Zhang, D. Q.; Li, G. S.; Huo, Y.; Li, H.; Lu, Y. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. J. Am. Chem. Soc. 2007, 129, 8406–8407.
Su, Y. H.; Song, Z. L.; Zhu, W.; Mu, Q. Q.; Yuan, X. Z.; Lian, Y. B.; Cheng, H.; Deng, Z.; Chen, M. Z.; Yin, W. J. et al. Visible-light photocatalytic CO2 reduction using metal-organic framework derived Ni(OH)2 nanocages: A synergy from multiple light reflection, static charge transfer, and oxygen vacancies. ACS Catal. 2021, 11, 345–354.
Sun, L. M.; Li, R.; Zhan, W. W.; Yuan, Y. S.; Wang, X. J.; Han, X. G.; Zhao, Y. L. Double-shelled hollow rods assembled from nitrogen/sulfur-codoped carbon coated indium oxide nanoparticles as excellent photocatalysts. Nat. Commun. 2019, 10, 2270.
Zhai, Y.; Wang, F. M.; Zhang, X. B.; Lv, G. J.; Wu, Y. Z.; Jiang, T.; Zhang, Q.; Li, M. Y.; Li, M. Y.; Liu, Y. K. Directional design and synthesis of high-yield hollow Fe-MFI zeolite encapsulating ultra-small Fe2O3 nanoparticles by using mother liquid. Nano Res. 2021, 14, 4304–4313.
Wu, Y.; Kobayashi, A.; Halder, G. J.; Peterson, V. K.; Chapman, K. W.; Lock, N.; Southon, P. D.; Kepert, C. J. Negative thermal expansion in the metal-organic framework material Cu3(1, 3, 5-benzenetricarboxylate)2. Angew. Chem., Int. Ed. 2008, 47, 8929–8932.
Shen, Q. Y.; Xu, T. Y.; Zhuang, G. L.; Zhuang, Y.; Sun, L. M.; Han, X. G.; Wang, X. J.; Zhan, W. W. Spatially separated photoinduced charge carriers for the enhanced photocatalysis over the one-dimensional yolk–shell In2Se3@N-C nanoreactor. ACS Catal. 2021, 11, 12931–12939.
Yang, Y.; Sun, L. M.; Zhan, W. W.; Wang, X. J.; Han, X. G. Separated redox site strategies for engineering highly efficient photocatalysts: A pagoda-like In2O3/CuO heteroepitaxial structure coated with a N-doped C layer. J. Mater. Chem. A 2021, 9, 4310–4316.
Zhan, W. W.; Yuan, Y. S.; Sun, L. M.; Yuan, Y. Y.; Han, X. G.; Zhao, Y. L. Hierarchical NiO@N-doped carbon microspheres with ultrathin nanosheet subunits as excellent photocatalysts for hydrogen evolution. Small 2019, 15, 1901024.