Journal Home > Volume 15 , Issue 5

Electrocatalytic nitrogen reduction reaction (NRR) is a sustainable approach for NH3 production with low energy consumption. However, competing hydrogen reduction reaction (HER) in aqueous solution results in low NH3 production and Faraday efficiency (FE). Here, MoS2 nanostructures with a hydrophobic surface are synthesized by alkyl thiols modification. Aerophilic and hydrophobic surface facilitates an efficient three-phase contact of N2, H2O, and catalyst. Thus, localized concentrated N2 molecules can overcome the mass transfer limitation of N2 and depress the HER due to lowering the proton contacts. Although the active-sites decrease with the increase of the alkyl chain since the thiol may cover the active site, the optimized electrocatalyst achieves NH3 yield of 12.86 × 10−11 mol·cm−2·s−1 at −0.25 V and 22.23% FE, which are 4.3 and 24 times higher than those of MoS2-CP electrocatalyst, respectively. The increased catalytic performance is attributed to the high N2 adsorption and depressed HER.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Surface hydrophobic modification enhanced catalytic performance of electrochemical nitrogen reduction reaction

Show Author's information Lijuan Niu1Ziwen Liu1Guohua Liu1Mengxuan Li2Xupeng Zong1Dandan Wang3Li An1( )Dan Qu1Xiaoming Sun2Xiayan Wang1Zaicheng Sun1( )
Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
State Key Laboratory of Chemical Resource Engineering College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China

Abstract

Electrocatalytic nitrogen reduction reaction (NRR) is a sustainable approach for NH3 production with low energy consumption. However, competing hydrogen reduction reaction (HER) in aqueous solution results in low NH3 production and Faraday efficiency (FE). Here, MoS2 nanostructures with a hydrophobic surface are synthesized by alkyl thiols modification. Aerophilic and hydrophobic surface facilitates an efficient three-phase contact of N2, H2O, and catalyst. Thus, localized concentrated N2 molecules can overcome the mass transfer limitation of N2 and depress the HER due to lowering the proton contacts. Although the active-sites decrease with the increase of the alkyl chain since the thiol may cover the active site, the optimized electrocatalyst achieves NH3 yield of 12.86 × 10−11 mol·cm−2·s−1 at −0.25 V and 22.23% FE, which are 4.3 and 24 times higher than those of MoS2-CP electrocatalyst, respectively. The increased catalytic performance is attributed to the high N2 adsorption and depressed HER.

Keywords: density functional theory calculations, nitrogen reduction reaction, MoS2 electrocatalyst , hydrophobic modification

References(47)

1

Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith III, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

2

Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.

3

Wang, C.; Gu, L. L.; Qiu, S. Y.; Gao, J.; Zhang, Y. C.; Wang, K. X.; Zou, J. J.; Zuo, P. J.; Zhu, X. D. Modulating CoFe2O4 nanocube with oxygen vacancy and carbon wrapper towards enhanced electrocatalytic nitrogen reduction to ammonia. Appl. Catal. B Environ. 2021, 297, 120452.

4

Hao, Y. C.; Guo, Y.; Chen, L. W.; Shu, M.; Wang, X. Y.; Bu, T. A.; Gao, W. Y.; Zhang, N.; Su, X.; Feng, X. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2019, 2, 448–456.

5

Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

6

Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

7

Liu, P. Y.; Shi, K.; Chen, W. Z.; Gao, R.; Liu, Z. L.; Hao, H. G.; Wang, Y. Q. Enhanced electrocatalytic nitrogen reduction reaction performance by interfacial engineering of MOF-based sulfides FeNi2S4/NiS hetero-interface. Appl. Catal. B Environ. 2021, 287, 119956.

8

Xiong, W.; Guo, Z.; Zhao, S. J.; Wang, Q.; Xu, Q. Y.; Wang, X. W. Facile, cost-effective plasma synthesis of self-supportive FeSx on Fe foam for efficient electrochemical reduction of N2 under ambient conditions. J. Mater. Chem. A 2019, 7, 19977–19983.

9

Wang, Y. C.; Ren, B. Y.; Ou, J. Z.; Xu, K.; Yang, C. H.; Li, Y. X.; Zhang, H. J. Engineering two-dimensional metal oxides and chalcogenides for enhanced electro- and photocatalysis. Sci. Bull. 2021, 66, 1228–1252.

10

Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

11

Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C. et al. Light-driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450.

12

Yang, D. S.; Chen, T.; Wang, Z. J. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. J. Mater. Chem. A 2017, 5, 18967–18971.

13

Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

14

Lv, C. D.; Qian, Y. M.; Yan, C. S.; Ding, Y.; Liu, Y. Y.; Chen, G.; Yu, G. H. Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 130, 10403–10407.

15

Yuan, L. P.; Wu, Z. Y.; Jiang, W. J.; Tang, T.; Niu, S.; Hu, J. S. Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia. Nano Res. 2020, 13, 1376–1382.

16

Lü, F.; Zhao, S. Z.; Guo, R. J.; He, J.; Peng, X. Y.; Bao, H. H.; Fu, J. T.; Han, L. L.; Qi, G. C.; Luo, J. et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019, 61, 420–427.

17

Yang, X. X.; Sun, S.; Meng, L.; Li, K.; Mukherjee, S.; Chen, X. Y.; Lv, J. Q.; Liang, S.; Zang, H. Y.; Yan, L. K. et al. Molecular single iron site catalysts for electrochemical nitrogen fixation under ambient conditions. Appl. Catal. B Environ. 2021, 285, 119794.

18

Wang, X. Q.; Wang, W. Y.; Qiao, M.; Wu, G.; Chen, W. X.; Yuan, T. W.; Xu, Q.; Chen, M.; Zhang, Y.; Wang, X. et al. Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci. Bull. 2018, 63, 1246–1253.

19

Li, J.; Chen, S.; Quan, F. J.; Zhan, G. M.; Jia, F. L.; Ai, Z. H.; Zhang, L. Z. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions. Chem 2020, 6, 885–901.

20

Lai, F. L.; Zong, W.; He, G. J.; Xu, Y.; Huang, H. W.; Weng, B.; Rao, D. W.; Martens, J. A.; Hofkens, J.; Parkin, I. P. et al. N2 electroreduction to NH3 by selenium vacancy-rich ReSe2 catalysis at an abrupt interface. Angew. Chem., Int. Ed. 2020, 59, 13320–13327.

21

Chen, G. F.; Ren, S. Y.; Zhang, L. L.; Cheng, H.; Luo, Y. R.; Zhu, K. H.; Ding, L. X.; Wang, H. H. Advances in electrocatalytic N2 reduction-strategies to tackle the selectivity challenge. Small Methods 2019, 3, 1800337.

22

Zhang, L. F.; Zhao, W. H.; Zhang, W. H.; Chen, J.; Hu, Z. P. Gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Res. 2019, 12, 1181–1186.

23

Deng, Y.; Xiao, Z. Y.; Wang, Z. C.; Lai, J. P.; Liu, X. B.; Zhang, D.; Han, Y.; Li, S. X.; Sun, W.; Wang, L. The rational adjusting of proton-feeding by pt-doped FeP/C hollow nanorod for promoting nitrogen reduction kinetics. Appl. Catal. B Environ. 2021, 291, 120047.

24

Tang, C.; Qiao, S. Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 2019, 48, 3166–3180.

25

Guo, X. X.; Du, H. T.; Qu, F. L.; Li, J. H. Recent progress in electrocatalytic nitrogen reduction. J. Mater. Chem. A 2019, 7, 3531–3543.

26

Liu, S. S.; Qian, T.; Wang, M. F.; Ji, H. Q.; Shen, X. W.; Wang, C.; Yan, C. L. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal. 2021, 4, 322–331.

27

Kang, C. S. M.; Zhang, X. Y.; MacFarlane, D. R. Synthesis and physicochemical properties of fluorinated ionic liquids with high nitrogen gas solubility. J. Phys. Chem. C 2018, 122, 24550–24558.

28

Li, A.; Cao, Q.; Zhou, G. Y.; Schmidt, B. V. K. J.; Zhu, W. J.; Yuan, X. T.; Huo, H. L.; Gong, J. L.; Antonietti, M. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface. Angew. Chem., Int. Ed. 2019, 58, 14549–14555.

29

Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

30

Li, X. H.; Ren, X.; Liu, X. J.; Zhao, J. X.; Sun, X.; Zhang, Y.; Kuang, X.; Yan, T.; Wei, Q.; Wu, D. A MoS2 nanosheet-reduced graphene oxide hybrid: An efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions. J. Mater. Chem. A 2019, 7, 2524–2528.

31

Zhao, J.; Zhao, J. X.; Cai, Q. H. Single transition metal atom embedded into a MoS2 nanosheet as a promising catalyst for electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 2018, 20, 9248–9255.

32

Wei, Y. S.; Wang, Y.; Wei, L.; Zhao, X. S.; Zhou, X. Y.; Liu, H. T. Highly efficient and reactivated electrocatalyst of ruthenium electrodeposited on nickel foam for hydrogen evolution from NaBH4 alkaline solution. Int. J. Hydrogen Energy 2018, 43, 592–600.

33

Liu, B. C.; Li, H.; Cao, B.; Jiang, J. N; Gao, R.; Zhang, J. Few layered N, P dual-doped carbon-encapsulated ultrafine MoP nanocrystal/MoP cluster hybrids on carbon cloth: An ultrahigh active and durable 3D self-supported integrated electrode for hydrogen evolution reaction in a wide pH range. Adv. Funct. Mater. 2018, 28, 1801527.

34

Chen, J. W.; Zhang, C. Y.; Huang, M.; Zhang, J.; Zhang, J.; Liu, H. G.; Wang, G.; Wang, R. L. The activation of porous atomic layered MoS2 basal-plane to induce adjacent Mo atom pairs promoting high efficiency electrochemical N2 fixation. Appl. Catal. B Environ. 2021, 285, 119810.

35

Devi, N. R.; Sasidharan, M.; Sundramoorthy, A. K. Gold nanoparticles-thiol-functionalized reduced graphene oxide coated electrochemical sensor system for selective detection of mercury ion. J. Electrochem. Soc. 2018, 165, B3046–B3053.

36

Ahmed, M. I.; Liu, C. W.; Zhao, Y.; Ren, W. H.; Chen, X. J.; Chen, S.; Zhao, C. Metal-sulfur linkages achieved by organic tethering of ruthenium nanocrystals for enhanced electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 21465–21469.

37

Li, Y. J.; Zhang, H. C.; Han, N. N.; Kuang, Y.; Liu, J. F.; Liu, W.; Duan, H. H.; Sun, X. M. Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction. Nano Res. 2019, 12, 177–182.

38

Li, X. H.; Li, T. S.; Ma, Y.; Wei, Q.; Qiu, W. B.; Guo, H. R.; Shi, X. F.; Zhang, P.; Asiri, A. M.; Chen, L. et al. Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower. Adv. Energy Mater. 2018, 8, 1801357.

39

Du, C.; Gao, Y. J.; Wang, J. G.; Chen, W. Achieving 59% faradaic efficiency of the N2 electroreduction reaction in an aqueous Zn-N2 battery by facilely regulating the surface mass transport on metallic copper. Chem. Commun. 2019, 55, 12801–12804.

40

Choi, J.; Suryanto, B. H. R.; Wang, D. B.; Du, H. L.; Hodgetts, R. Y.; Vallana, F. M. F.; MacFarlane, D. R.; Simonov, A. N. Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat. Commun. 2020, 11, 5546.

41

Shahid, U. B.; Siddharth, K.; Shao, M. Electrifying the nitrogen cycle: An electrochemical endeavor. Curr. Opin. Electrochem. 2021, 30, 100790.

42

Niu, L. J.; Wang, D.; Xu, K.; Hao, W. C.; An, L.; Kang, Z. H.; Sun, Z. C. Tuning the performance of nitrogen reduction reaction by balancing the reactivity of N2 and the desorption of NH3. Nano Res. 2021, 14, 4093–4099.

43

Zheng, J. Y.; Lyu, Y. H.; Qiao, M.; Wang, R. L.; Zhou, Y. Y.; Li, H.; Chen, C.; Li, Y. F.; Zhou, H. J.; Jiang, S. P. et al. Photoelectrochemical synthesis of ammonia on the aerophilic-hydrophilic heterostructure with 37.8% efficiency. Chem 2019, 5, 617–633.

44

Wang, C. R.; Wang, S.; Lv, J. G.; Ma, Y. X.; Wang, Y. Q.; Zhou, G. L.; Chen, M. S.; Zhao, M.; Chen, X. S.; Yang, L. Co doped MoS2 as bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reactions. Int. J. Electrochem. Sci. 2019, 14, 9805–9814.

45
Xu, T.; Liang, J.; Wang, Y. Y.; Li, S. X.; Du, Z. B.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Shi, X. F. et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res., in press, DOI: 10.1007/s12274-021-3592-8.
46

Gao, X.; An, L.; Qu, D.; Jiang, W. S.; Chai, Y. X.; Sun, S. R.; Liu, X. Y.; Sun, Z. C. Enhanced photocatalytic N2 fixation by promoting N2 adsorption with a co-catalyst. Sci. Bull. 2019, 64, 918–925.

47

Li, C. Y.; Le, J. B.; Wang, Y. H.; Chen, S.; Yang, Z. L.; Li, J. F.; Cheng, J.; Tian, Z. Q. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 2019, 18, 697–701.

Video
12274_4015_ESM1.mp4
12274_4015_ESM2.mp4
12274_4015_ESM3.mp4
12274_4015_ESM4.mp4
12274_4015_ESM5.mp4
File
12274_2021_4015_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 September 2021
Revised: 04 November 2021
Accepted: 23 November 2021
Published: 07 January 2022
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

We acknowledge financial support from the Beijing Municipal High Level Innovative Team Building Program (No. IDHT20180504), Beijing Outstanding Young Scientist Program (No. BJJWZYJH01201910005017), the National Natural Science Foundation of China (Nos. 51801006, 21805004, 21872001, and 21936001), Beijing Natural Science Foundation (No. 2192005), and Beijing Municipal Science and Natural Science Fund Project (Nos. KM201910005016 and 2017000020124G085). The authors would like to thank the Shiyanjia Lab (www.shiyanjia.com) for the XPS and liquid contact angle tests.

Return