Journal Home > Volume 16 , Issue 4

In heterogeneous catalysis, the precise placement of active components to perform unique functions in cooperation with each other is a tremendous challenge. The migration of matter on micro/nano-scale caused by diffusion is a promising pathway for design of catalytic nanoreactors with precise active sites location and controllable microenvironment through compartmentalization and confinement effects. Herein, we report two categories of mesoporous ZnCoSiOx hollow nanoreactors with different metal distributions and microenvironment engineered by the diffusion behavior of metal species in confined nanospace. Double-shelled hollow structures with well-distributed metal species were obtained by adopting core@shell structured ZnCo-zeolitic imidazolate framework (ZIF)@SiO2 as a template and employing three stages of hydrothermal treatment including the decomposition of ZIF, diffusion of metal species into the silica shell, and Ostwald ripening. Additionally, the formation of yolk@shell structure with a collective (Zn-Co) metal oxide as the yolk was achieved by direct pyrolysis of ZnCo-ZIF@SiO2. In CO2 hydrogenation, ZnCoSiOx with double-shelled hollow structures and yolk@shell structures respectively afford CO and CH4 as main product, which is related with different dispersion and location of active sites in the two catalysts. This study provides an efficient method for the synthesis of catalytic nanoreactors on the basis of insights of the atomic diffusion in confined space at the mesoscale.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Design of mesoporous ZnCoSiOx hollow nanoreactors with specific spatial distribution of metal species for selective CO2 hydrogenation

Show Author's information Xinyao Wang1,2Runping Ye1Melis S. Duyar3Cameron Alexander Hurd Price4Hao Tian1,5Yanping Chen1Na Ta1Hao Liu5Jian Liu1,3,6( )
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
University of Chinese Academy of Sciences, Beijing 100049, China
Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK
Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester, UK
Centre for Clean Energy Technology, University of Technology Sydney, Sydney, Broadway NSW 2007, Australia
DICP-Surrey Joint Centre for Future Materials, Advanced Technology Institute, University of Surrey, Guildford, Surrey GU2 7XH, UK

Abstract

In heterogeneous catalysis, the precise placement of active components to perform unique functions in cooperation with each other is a tremendous challenge. The migration of matter on micro/nano-scale caused by diffusion is a promising pathway for design of catalytic nanoreactors with precise active sites location and controllable microenvironment through compartmentalization and confinement effects. Herein, we report two categories of mesoporous ZnCoSiOx hollow nanoreactors with different metal distributions and microenvironment engineered by the diffusion behavior of metal species in confined nanospace. Double-shelled hollow structures with well-distributed metal species were obtained by adopting core@shell structured ZnCo-zeolitic imidazolate framework (ZIF)@SiO2 as a template and employing three stages of hydrothermal treatment including the decomposition of ZIF, diffusion of metal species into the silica shell, and Ostwald ripening. Additionally, the formation of yolk@shell structure with a collective (Zn-Co) metal oxide as the yolk was achieved by direct pyrolysis of ZnCo-ZIF@SiO2. In CO2 hydrogenation, ZnCoSiOx with double-shelled hollow structures and yolk@shell structures respectively afford CO and CH4 as main product, which is related with different dispersion and location of active sites in the two catalysts. This study provides an efficient method for the synthesis of catalytic nanoreactors on the basis of insights of the atomic diffusion in confined space at the mesoscale.

Keywords: nanostructures, mesoporous materials, metal–organic frameworks, supported catalysts, structure-activity relationships

References(44)

[1]

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[2]

Liu, P.; Qin, R.; Fu, G.; Zheng, N. Surface coordination chemistry of metal nanomaterials. J. Am. Chem. Soc. 2017, 139, 2122–2131.

[3]

Jin, R. C.; Li, G.; Sharma, S.; Li, Y. W.; Du, X. S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567–648.

[4]

Ro, I.; Resasco, J.; Christopher, P. Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts. ACS Catal. 2018, 8, 7368–7387.

[5]

Zhu, W.; Chen, Z.; Pan, Y.; Dai, R. Y.; Wu, Y.; Zhuang, Z. B.; Wang, D. S.; Peng, Q.; Chen, C.; Li, Y. D. Functionalization of hollow nanomaterials for catalytic applications: Nanoreactor construction. Adv. Mater. 2019, 31, 1800426.

[6]

Yu, Z. H.; Lu, X. B.; Sun, L. H.; Xiong, J.; Ye, L.; Li, X. Y.; Zhang, R.; Ji, N. Metal-loaded hollow carbon nanostructures as nanoreactors: Microenvironment effects and prospects for biomass hydrogenation applications. ACS Sustainable Chem. Eng. 2021, 9, 2990–3010.

[7]

Petrosko, S. H.; Johnson, R.; White, H.; Mirkin, C. A. Nanoreactors: Small spaces, big implications in chemistry. J. Am. Chem. Soc. 2016, 138, 7443–7445.

[8]

Prieto, G.; Tüysüz, H.; Duyckaerts, N.; Knossalla, J.; Wang, G. H.; Schüth, F. Hollow nano- and microstructures as catalysts. Chem. Rev. 2016, 116, 14056–14119.

[9]

Dong, C.; Yu, Q.; Ye, R. P.; Su, P. P.; Liu, J.; Wang, G. H. Hollow carbon sphere nanoreactors loaded with PdCu nanoparticles: Void-confinement effects in liquid-phase hydrogenations. Angew. Chem., Int. Ed. 2020, 59, 18374–18379.

[10]

Tian, H.; Zhao, J. H.; Wang, X. Y.; Wang, L. Z.; Liu, H.; Wang, G.; Huang, J.; Liu, J.; Lu, G. Q. Construction of hollow mesoporous silica nanoreactors for enhanced photo-oxidations over Au-Pt catalysts. Natl. Sci. Rev. 2020, 7, 1647–1655.

[11]

Su, B. L. Confined nanospace for enhanced photocatalysis. Natl. Sci. Rev. 2021, 8, nwab003.

[12]

Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 2008, 20, 1523–1528.

[13]

Xiao, M. D.; Zhao, C. M.; Chen, H. J.; Yang, B. C.; Wang, J. F. “Ship-in-a-bottle” growth of noble metal nanostructures. Adv. Funct. Mater. 2012, 22, 4526–4532.

[14]

Zou, H. B.; Dai, J. Y.; Suo, J. Q.; Ettelaie, R.; Li, Y.; Xue, N.; Wang, R. W.; Yang, H. Q. Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nat. Commun. 2021, 12, 4968.

[15]

Kosari, M.; Anjum, U.; Xi, S. B.; Lim, A. M. H.; Seayad, A. M.; Raj, E. A. J.; Kozlov, S. M.; Borgna, A.; Zeng, H. C. Revamping SiO2 spheres by core–shell porosity endowment to construct a mazelike nanoreactor for enhanced catalysis in CO2 hydrogenation to methanol. Adv. Funct. Mater. 2021, 31, 2170345.

[16]

Tackett, B. M.; Gomez, E.; Chen, J. G. Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat. Catal. 2019, 2, 381–386.

[17]

Kattel, S.; Liu, P.; Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739–9754.

[18]

Díez-Ramírez, J.; Sánchez, P.; Kyriakou, V.; Zafeiratos, S.; Marnellos, G. E.; Konsolakis, M.; Dorado, F. Effect of support nature on the cobalt-catalyzed CO2 hydrogenation. J. CO2 Util. 2017, 21, 562–571.

[19]

Zhou, G. L.; Liu, H. R.; Xing, Y. Z.; Xu, S. Y.; Xie, H. M.; Xiong, K. CO2 hydrogenation to methane over mesoporous Co/SiO2 catalysts: Effect of structure. J. CO2 Util. 2018, 26, 221–229.

[20]

Melaet, G.; Ralston, W. T.; Li, C. S.; Alayoglu, S.; An, K.; Musselwhite, N.; Kalkan, B.; Somorjai, G. A. Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation. J. Am. Chem. Soc. 2014, 136, 2260–2263.

[21]

Li, W. H.; Nie, X. W.; Jiang, X.; Zhang, A. F.; Ding, F. S.; Liu, M.; Liu, Z. M.; Guo, X. W.; Song, C. S. ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation. Appl. Catal. B Environ. 2018, 220, 397–408.

[22]

Wang, L. X.; Guan, E. J.; Wang, Y. Q.; Wang, L.; Gong, Z. M.; Cui, Y.; Meng, X. J.; Gates, B. C.; Xiao, F. S. Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts. Nat. Commun. 2020, 11, 1033.

[23]

Wang, L. X.; Wang, L.; Zhang, J.; Liu, X. L.; Wang, H.; Zhang, W.; Yang, Q.; Ma, J. Y.; Dong, X.; Yoo, S. J. et al. Selective hydrogenation of CO2 to ethanol over cobalt catalysts. Angew. Chem., Int. Ed. 2018, 57, 6104–6108.

[24]

Dostagir, N. H.; Rattanawan, R.; Gao, M.; Ota, J.; Hasegawa, J. Y.; Asakura, K.; Fukouka, A.; Shrotri, A. Co single atoms in ZrO2 with inherent oxygen vacancies for selective hydrogenation of CO2 to CO. ACS Catal. 2021, 11, 9450–9461.

[25]

Jimenez, J. D.; Wen, C.; Royko, M. M.; Kropf, A. J.; Segre, C.; Lauterbach, J. Influence of coordination environment of anchored single-site cobalt catalyst on CO2 hydrogenation. ChemCatChem 2020, 12, 846–854.

[26]

Bavykina, A.; Kolobov, N.; Khan, I. S.; Bau, J. A.; Ramirez, A.; Gascon, J. Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives. Chem. Rev. 2020, 120, 8468–8535.

[27]

Huang, Z. L.; Fan, L. L.; Zhao, F. G.; Chen, B.; Xu, K. J.; Zhou, S. F.; Zhang, J. L.; Li, Q. B.; Hua, D.; Zhan, G. W. Rational engineering of multilayered Co3O4/ZnO nanocatalysts through chemical transformations from matryoshka-type ZIFs. Adv. Funct. Mater. 2019, 29, 1903774.

[28]

Zhang, J. Z.; An, B.; Li, Z.; Cao, Y. H.; Dai, Y. H.; Wang, W. Y.; Zeng, L. Z.; Lin, W. B.; Wang, C. Neighboring Zn-Zr sites in a metal–organic framework for CO2 hydrogenation. J. Am. Chem. Soc. 2021, 143, 8829–8837.

[29]

Zhao, Y. F.; Zhou, H.; Zhu, X. R.; Qu, Y. T.; Xiong, C.; Xue, Z. G.; Zhang, Q. W.; Liu, X. K.; Zhou, F. Y.; Mou, X. M. et al. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat. Catal. 2021, 4, 134–143.

[30]

Dang, Q.; Li, Y. C.; Zhang, W.; Kaneti, Y. V.; Hu, M.; Yamauchi, Y. Spatial-controlled etching of coordination polymers. Chin. Chem. Lett. 2021, 32, 635–641.

[31]

Wei, J. T.; Chen, Y. P.; Ma, Y. F.; Shi, X.; Zhang, X. L.; Shi, C. J.; Hu, M.; Liu, J. Precisely engineering architectures of Co/C sub-microreactors for selective Syngas conversion. Small 2021, 17, 2100082.

[32]

Hu, X. R.; Wang, C. H.; Luo, R.; Liu, C.; Qi, J. W.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J.; Li, J. S. Double -shelled hollow ZnO/carbon nanocubes as an efficient solid-phase microextraction coating for the extraction of broad-spectrum pollutants. Nanoscale 2019, 11, 2805–2811.

[33]

Zhang, P.; Guan, B. Y.; Yu, L.; Lou, X. W. Formation of double-shelled zinc-cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors. Angew. Chem., Int. Ed. 2017, 56, 7141–7145.

[34]

Zhan, G. W.; Zeng, H. C. ZIF-67-derived nanoreactors for controlling product selectivity in CO2 hydrogenation. ACS Catal. 2017, 7, 7509–7519.

[35]

Lü, Y. Y.; Zhan, W. W.; He, Y.; Wang, Y. T.; Kong, X. J.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 2014, 6, 4186–4195.

[36]

Lin, Q. H.; Zhang, Q. D.; Yang, G. H.; Chen, Q. J.; Li, J.; Wei, Q. H.; Tan, Y. S.; Wan, H. L.; Tsubaki, N. Insights into the promotional roles of palladium in structure and performance of cobalt-based zeolite capsule catalyst for direct synthesis of C5-C11 iso-paraffins from syngas. J. Catal. 2016, 344, 378–388.

[37]

Su, P. P.; Ma, S. S.; Huang, W. J.; Boyjoo, Y.; Bai, S.; Liu, J. Ca2+-doped ultrathin cobalt hydroxyl oxides derived from coordination polymers as efficient electrocatalysts for the oxidation of water. J. Mater. Chem. A 2019, 7, 19415–19422.

[38]

Chen, C.; Hu, Z. P.; Ren, J. T.; Zhang, S. M.; Wang, Z.; Yuan, Z. Y. ZnO supported on high-silica HZSM-5 as efficient catalysts for direct dehydrogenation of propane to propylene. Mol. Catal. 2019, 476, 110508.

[39]

Yang, C. S.; Liu, S. H.; Wang, Y. N.; Song, J. M.; Wang, G. S.; Wang, S.; Zhao, Z. J.; Mu, R. T.; Gong, J. L. The interplay between structure and product selectivity of CO2 hydrogenation. Angew. Chem., Int. Ed. 2019, 58, 11242–11247.

[40]

Efremova, A.; Rajkumar, T.; Szamosvölgyi, Á.; Sápi, A.; Baán, K.; Szenti, I.; Gómez-Pérez, J.; Varga, G.; Kiss, J.; Halasi, G. et al. Complexity of a Co3O4 system under ambient-pressure CO2 methanation: Influence of bulk and surface properties on the catalytic performance. J. Phys. Chem. C 2021, 125, 7130–7141.

[41]

Dong, H.; Liu, Q. Three-dimensional networked Ni-phyllosilicate catalyst for CO2 methanation: Achieving high dispersion and enhanced stability at high Ni loadings. ACS Sustainable Chem. Eng. 2020, 8, 6753–6766.

[42]

Tian, H.; Liu, X. Y.; Dong, L. B.; Ren, X. M.; Liu, H.; Price, C. A. H.; Li, Y.; Wang, G. X.; Yang, Q. H.; Liu, J. Enhanced hydrogenation performance over hollow structured Co-CoOx@N-C capsules. Adv. Sci. 2019, 6, 1900807.

[43]

Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hüvecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893–897.

[44]

Kuld, S.; Thorhauge, M.; Falsig, H.; Elkjær, C. F.; Helveg, S.; Chorkendorff, I.; Sehested, J. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science 2016, 352, 969–974.

File
12274_2021_4013_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 September 2011
Revised: 09 November 2021
Accepted: 22 November 2021
Published: 20 December 2021
Issue date: April 2023

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors are grateful to Prof. Qihua Yang for fruitful discussions. This work was financially supported by the National Natural Science Foundation of China (No. 22005296), the Natural Science Foundation of Liaoning Province, China (No. 2020-YQ-01), and the LiaoNing Revitalization Talents Program, China (No. XLYC1807077).

Return