Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We systematically investigated the catalytic performance of 3d, 4d, and 5d transition metals anchored onto two-dimensional extended porphyrin (PP) substrates as nitrogen reduction reaction (NRR) electrocatalysts, employing density functional theory (DFT) calculations and four-step high-throughput screening. Four novel metalloporphyrin (MPP, M = Zr, Nb, Hf, and Re) single-atom catalyst candidates have been identified due to their excellent catalytic performance (low onset potential, high stability, and selectivity). Through comprehensive reaction path search, the maximum Gibbs free energy changes for NRR on the ZrPP (enzymatic-consecutive hybrid path), NbPP (consecutive path), HfPP (enzymatic-consecutive hybrid path), and RePP (distal path) catalysts are 0.38, 0.41, 0.53, and 0.53 eV, respectively. Band structures, projected density of states, and charge/spin distributions show that the high catalytic activity is due to significant orbital hybridizations and charge transfer between N2 and MPP catalysts. We hope our work will promote experimental synthesis of these NRR electrocatalysts and provide new opportunities to the electrochemical conversion of N2 to NH3 under ambient conditions.
Zamfirescu, C.; Dincer, I. Using ammonia as a sustainable fuel. J. Power Sources 2008, 185, 459–465.
Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.
Galloway, J. N.; Townsend, A. R.; Erisman, J. W.; Bekunda, M.; Cai, Z. C.; Freney, J. R.; Martinelli, L. A.; Seitzinger, S. P.; Sutton, M. A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892.
Smil, V. Detonator of the population explosion. Nature 1999, 400, 415.
Schlögl, R. Catalytic synthesis of ammonia—A “never-ending story”? Angew. Chem., Int. Ed. 2003, 42, 2004–2008.
Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.
Pickett, C. J.; Talarmin, J. Electrosynthesis of ammonia. Nature 1985, 317, 652–653.
Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.
Giddey, S.; Badwal, S. P. S.; Kulkarni, A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 2013, 38, 14576–14594.
Zhang, Y.; Du, H. T.; Ma, Y. J.; Ji, L.; Guo, H. R.; Tian, Z. Q.; Chen, H. Y.; Huang, H.; Cui, G. W.; Asiri, A. M. et al. Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Res. 2019, 12, 919–924.
Fang, C.; An, W. Single-metal-atom site with high-spin state embedded in defective BN nanosheet promotes electrocatalytic nitrogen reduction. Nano Res. 2021, 14, 4211–4219.
Nong, W.; Liang, H. K.; Qin, S. H.; Li, Y.; Wang, C. X. Computational design of two-dimensional boron-containing compounds as efficient metal-free electrocatalysts toward nitrogen reduction independent of heteroatom doping. ACS Appl. Mater. Interfaces 2020, 12, 50505–50515.
Cao, Y. Y.; Gao, Y. J.; Zhou, H.; Chen, X. L.; Hu, H.; Deng, S. W.; Zhong, X.; Zhuang, G. L.; Wang, J. G. Highly efficient ammonia synthesis electrocatalyst: Single Ru atom on naturally nanoporous carbon materials (Adv. Theory Simul. 5/2018). Adv. Theory Simul. 2018, 1, 1870012.
Yang, T. T.; Tang, S. B.; Li, X. Y.; Sharman, E.; Jiang, J.; Luo, Y. Graphene oxide-supported transition metal catalysts for di-nitrogen reduction. J. Phys. Chem. C 2018, 122, 25441–25446.
Zhao, W. H.; Zhang, L. F.; Luo, Q. Q.; Hu, Z. P.; Zhang, W. H.; Smith, S.; Yang, J. L. Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catal. 2019, 9, 3419–3425.
Li, L.; Li, B. H.; Guo, Q. Y.; Li, B. Theoretical screening of single-atom-embedded MoSSe nanosheets for electrocatalytic N2 fixation. J. Phys. Chem. C 2019, 123, 14501–14507.
Ying, Y. R.; Fan, K.; Luo, X.; Huang, H. T. Predicting two-dimensional pentagonal transition metal monophosphides for efficient electrocatalytic nitrogen reduction. J. Mater. Chem. A 2019, 7, 11444–11451.
Huang, Y.; Yang, T. T.; Yang, L.; Liu, R.; Zhang, G. Z.; Jiang, J.; Luo, Y.; Lian, P.; Tang, S. B. Graphene-boron nitride hybrid-supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction. J. Mater. Chem. A 2019, 7, 15173–15180.
Guo, X. Y.; Huang, S. P. Tuning nitrogen reduction reaction activity via controllable Fe magnetic moment: A computational study of single Fe atom supported on defective graphene. Electrochim. Acta 2018, 284, 392–399.
Ma, B. Y.; Peng, Y.; Ma, D. W.; Deng, Z.; Lu, Z. S. Boron-doped InSe monolayer as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. Appl. Surf. Sci. 2019, 495, 143463.
Yang, L. M.; Bačić, V.; Popov, I. A.; Boldyrev, A. I.; Heine, T.; Frauenheim, T.; Ganz, E. Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. J. Am. Chem. Soc. 2015, 137, 2757–2762.
Song, B. Y.; Zhou, Y.; Yang, H. M.; Liao, J. H.; Yang, L. M.; Yang, X. B.; Ganz, E. Two-dimensional anti-van’t Hoff/Le Bel array AlB6 with high stability, unique motif, triple dirac cones, and superconductivity. J. Am. Chem. Soc. 2019, 141, 3630–3640.
Yang, L. M.; Popov, I. A.; Frauenheim, T.; Boldyrev, A. I.; Heine, T.; Bačić, V.; Ganz, E. Revealing unusual chemical bonding in planar hyper-coordinate Ni2Ge and quasi-planar Ni2Si two-dimensional crystals. Phys. Chem. Chem. Phys. 2015, 17, 26043–26048.
Yang, L. M.; Popov, I. A.; Boldyrev, A. I.; Heine, T.; Frauenheim, T.; Ganz, E. Post-anti-van’t Hoff-Le Bel motif in atomically thin germanium-copper alloy film. Phys. Chem. Chem. Phys. 2015, 17, 17545–17551.
Yang, L. M.; Ganz, E. Adding a new dimension to the chemistry of phosphorus and arsenic. Phys. Chem. Chem. Phys. 2016, 18, 17586–17591.
Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.
Pan, Y.; Zhang, C.; Liu, Z.; Chen, C.; Li, Y. D. Structural regulation with atomic-level precision: From single-atomic site to diatomic and atomic interface catalysis. Matter 2020, 2, 78–110.
Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.
Xu, L.; Yang, L. M.; Ganz, E. Electrocatalytic reduction of N2 using metal-doped borophene. ACS Appl. Mater. Interfaces 2021, 13, 14091–14101.
Ren, C. J.; Jiang, Q. Y.; Lin, W.; Zhang, Y. F.; Huang, S. P.; Ding, K. N. Density functional theory study of single-atom V, Nb, and Ta catalysts on graphene and carbon nitride for selective nitrogen reduction. ACS Appl. Nano Mater. 2020, 3, 5149–5159.
Maibam, A.; Govindaraja, T.; Selvaraj, K.; Krishnamurty, S. Dinitrogen activation on graphene anchored single atom catalysts: Local site activity or surface phenomena. J. Phys. Chem. C 2019, 123, 27492–27500.
Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672.
Ma, X. G.; Hu, J. S.; Zheng, M. K.; Li, D.; Lv, H.; He, H.; Huang, C. Y. N2 reduction using single transition-metal atom supported on defective WS2 monolayer as promising catalysts: A DFT study. Appl. Surf. Sci. 2019, 489, 684–692.
Huang, B.; Li, N.; Ong, W. J.; Zhou, N. G. Single atom-supported MXene: How single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation. J. Mater. Chem. A 2019, 7, 27620–27631.
Ling, C. Y.; Ouyang, Y. X.; Li, Q.; Bai, X. W.; Mao, X.; Du, A. J.; Wang, J. L. A general two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation. Small Methods 2019, 3, 1800376.
Han, M. M.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Theoretical study of single transition metal atom modified MoP as a nitrogen reduction electrocatalyst. Phys. Chem. Chem. Phys. 2019, 21, 5950–5955.
Zhou, H. Y.; Li, J. C.; Wen, Z.; Jiang, Q. Tuning the catalytic activity of a single Mo atom supported on graphene for nitrogen reduction via Se atom doping. Phys. Chem. Chem. Phys. 2019, 21, 14583–14588.
Lv, S. Y.; Huang, C. X.; Li, G. L.; Yang, L. M. Electrocatalytic mechanism of N2 reduction reaction by single-atom catalyst rectangular TM-TCNQ monolayers. ACS Appl. Mater. Interfaces 2021, 13, 29641–29653.
Zhao, M. R.; Song, B. Y.; Yang, L. M. Two-dimensional single-atom catalyst TM3(HAB)2 monolayers for electrocatalytic dinitrogen reduction using hierarchical high-throughput screening. ACS Appl. Mater. Interfaces 2021, 13, 26109–26122.
Liu, J. H.; Yang, L. M.; Ganz, E. Electrocatalytic reduction of CO2 by two-dimensional transition metal porphyrin sheets. J. Mater. Chem. A 2019, 7, 11944–11952.
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Perdew, J.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem 2015, 8, 2180–2186.
Huang, C. X.; Li, G. L.; Yang, L. M.; Ganz, E. Ammonia synthesis using single-atom catalysts based on two-dimensional organometallic metal phthalocyanine monolayers under ambient conditions. ACS Appl. Mater. Interfaces 2021, 13, 608–621.
Choi, C.; Back, S.; Kim, N. Y.; Lim, J.; Kim, Y. H.; Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 8, 7517–7525.
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.