Journal Home > Volume 16 , Issue 4

In the past decades, metal-containing nanomaterials have attracted increasing interests owing to their intriguing physicochemical properties and various promising applications. Recent research has revealed that the phase of metal-containing nanomaterials could significantly affect their properties and functions. In particular, nanomaterials with amorphous phase, which possess long-range disordered atomic arrangements, and the amorphous/crystalline heterophase nanostructures comprised of both amorphous and crystalline phases, have exhibited superior performance in various applications, e.g., catalysis and energy storage. In this review, a brief overview of the recent progress on the wet-chemical synthesis and applications of amorphous and amorphous/crystalline heterophase metal-containing nanomaterials has been provided. Subsequently, on the basis of different categories of metal-containing nanomaterials, including metals, metal alloys, and metal compounds, their synthetic routes and promising applications will be highlighted. Finally, current challenges and some personal perspectives in this emerging research field will be proposed.


menu
Abstract
Full text
Outline
About this article

Wet-chemical synthesis and applications of amorphous metal-containing nanomaterials

Show Author's information Jinzhe Liang1,§Yiyao Ge1,§Zhen He1,2,§Qinbai Yun1Guigao Liu1,4Shiyao Lu1Li Zhai1,2Biao Huang1,2Hua Zhang1,2,3( )
Department of Chemistry, City University of Hong Kong, Hong Kong, China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

§ Jinzhe Liang, Yiyao Ge, and Zhen He contributed equally to this work.

Abstract

In the past decades, metal-containing nanomaterials have attracted increasing interests owing to their intriguing physicochemical properties and various promising applications. Recent research has revealed that the phase of metal-containing nanomaterials could significantly affect their properties and functions. In particular, nanomaterials with amorphous phase, which possess long-range disordered atomic arrangements, and the amorphous/crystalline heterophase nanostructures comprised of both amorphous and crystalline phases, have exhibited superior performance in various applications, e.g., catalysis and energy storage. In this review, a brief overview of the recent progress on the wet-chemical synthesis and applications of amorphous and amorphous/crystalline heterophase metal-containing nanomaterials has been provided. Subsequently, on the basis of different categories of metal-containing nanomaterials, including metals, metal alloys, and metal compounds, their synthetic routes and promising applications will be highlighted. Finally, current challenges and some personal perspectives in this emerging research field will be proposed.

Keywords: catalysis, metal-containing nanomaterials, wet-chemical synthesis, amorphous nanomaterials, amorphous/crystalline heterophase

References(161)

[1]

Yang, T. H.; Ahn, J.; Shi, S.; Wang, P.; Gao, R. Q.; Qin, D. Noble-metal nanoframes and their catalytic applications. Chem. Rev. 2021, 121, 796–833.

[2]

Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106.

[3]

Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

[4]

Zhou, M.; Li, C.; Fang, J. Y. Noble-metal based random alloy and intermetallic nanocrystals: Syntheses and applications. Chem. Rev. 2021, 121, 736–795.

[5]

Yin, X. M.; Tang, C. S.; Zheng, Y.; Gao, J.; Wu, J.; Zhang, H.; Chhowalla, M.; Chen, W.; Wee, A. T. S. Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-)metallic phases. Chem. Soc. Rev. 2021, 50, 10087–10115.

[6]

Dai, Y. H.; Gao, X.; Wang, Q. J.; Wan, X. Y.; Zhou, C. M.; Yang, Y. H. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem. Soc. Rev. 2021, 50, 5590–5630.

[7]

Li, S. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Nanostructured metal phosphides: From controllable synthesis to sustainable catalysis. Chem. Soc. Rev. 2021, 50, 7539–7586.

[8]

Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409–6455.

[9]
Li, Z. J.; Zhai, L.; Ge, Y. Y.; Huang, Z. Q.; Shi, Z. Y.; Liu, J. W.; Zhai, W.; Liang, J. Z.; Zhang, H. Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis. Natl. Sci. Rev., in press, DOI: 10.1093/nsr/nwab142.
[10]

Zhang, T. R.; Wang, S. Y. Noble-metal-free electrocatalysis. Acta Phys. -Chim. Sin. 2021, 37, 2012052.

[11]

Centi, G. Smart catalytic materials for energy transition. SmartMat 2020, 1, e1005.

[12]

Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

[13]

Ge, Y. Y.; Wang, X. X.; Huang, B.; Huang, Z. Q.; Chen, B.; Ling, C. Y.; Liu, J. W.; Liu, G. H.; Zhang, J.; Wang, G. et al. Seeded synthesis of unconventional 2H-phase Pd alloy nanomaterials for highly efficient oxygen reduction. J. Am. Chem. Soc. 2021, 143, 17292–17299.

[14]

Liang, J. S.; Liu, X.; Li, Q. Principles, strategies, and approaches for designing highly durable platinum-based catalysts for proton exchange membrane fuel cells. Acta Phys. -Chim. Sin. 2021, 37, 2010072.

[15]

Zheng, T. F.; Jiang, J. X.; Wang, J.; Hu, S. F.; Ding, W.; Wei, Z. D. Regulation of electrocatalysts based on confinement-induced properties. Acta Phys. -Chim. Sin. 2021, 37, 2011027.

[16]

Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. -Chim. Sin. 2021, 37, 2108017.

[17]

Li, Z.; Fu, J. Y.; Feng, Y.; Dong, C. K.; Liu, H.; Du, X. W. A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nat. Catal. 2019, 2, 1107–1114.

[18]

Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Gong, Y.; Yi, D.; Zhang, Q. H.; Zhu, C. Z.; Saleem, F.; Chen, B.; Lai, Z. C. et al. Evoking ordered vacancies in metallic nanostructures toward a vacated Barlow packing for high-performance hydrogen evolution. Sci. Adv. 2021, 7, eabd6647.

[19]

Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

[20]

Zhong, M.; Tran, K.; Min, Y.; Wang, C. H.; Wang, Z. Y.; Dinh, C. T.; De Luna, P.; Yu, Z. Q.; Rasouli, A. S.; Brodersen, P. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178–183.

[21]

Meng, Y. C.; Kuang, S. Y.; Liu, H.; Fan, Q.; Ma, X. B.; Zhang, S. Recent advances in electrochemical CO2 reduction using copper-based catalysts. Acta Phys. -Chim. Sin. 2021, 37, 2006034.

[22]

Kumbhakar, P.; Gowda, C. C.; Mahapatra, P. L.; Mukherjee, M.; Malviya, K. D.; Chaker, M.; Chandra, A.; Lahiri, B.; Ajayan, P. M.; Jariwala, D. et al. Emerging 2D metal oxides and their applications. Mater. Today 2021, 45, 142–168.

[23]

Ma, R. Z.; Sasaki, T. Two-dimensional oxide and hydroxide nanosheets: Controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc. Chem. Res. 2015, 48, 136–143.

[24]

Chen, G.; Wan, H.; Ma, W.; Zhang, N.; Cao, Y. J.; Liu, X. H.; Wang, J.; Ma, R. Z. Layered metal hydroxides and their derivatives: Controllable synthesis, chemical exfoliation, and electrocatalytic applications. Adv. Energy Mater. 2020, 10, 1902535.

[25]

Di, T. M.; Xu, Q. L.; Ho, W.; Tang, H.; Xiang, Q. J.; Yu, J. G. Review on metal sulphide-based Z-scheme photocatalysts. ChemCatChem 2019, 11, 1394–1411.

[26]

Pu, Z. H.; Liu, T. T.; Amiinu, I. S.; Cheng, R. L.; Wang, P. Y.; Zhang, C. T.; Ji, P. X.; Hu, W. H.; Liu, J.; Mu, S. C. Transition-metal phosphides: Activity origin, energy-related electrocatalysis applications, and synthetic strategies. Adv. Funct. Mater. 2020, 30, 2004009.

[27]

Wang, X. T.; Guo, L. SERS activity of semiconductors: Crystalline and amorphous nanomaterials. Angew. Chem., Int. Ed. 2020, 59, 4231–4239.

[28]

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

[29]

Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119, 478–598.

[30]

Yang, T. H.; Shi, Y. F.; Janssen, A.; Xia, Y. N. Surface capping agents and their roles in shape-controlled synthesis of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2020, 59, 15378–15401.

[31]

Shi, Y. F.; Lyu, Z. H.; Zhao, M.; Chen, R. H.; Nguyen, Q. N.; Xia, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735.

[32]

Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.

[33]

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

[34]

Zhao, M.; Xia, Y. N. Crystal-phase and surface-structure engineering of ruthenium nanocrystals. Nat. Rev. Mater. 2020, 5, 440–459.

[35]

Sokolikova, M. S.; Mattevi, C. Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chem. Soc. Rev. 2020, 49, 3952–3980.

[36]

Zhang, X.; Lai, Z. C.; Ma, Q. L.; Zhang, H. Novel structured transition metal dichalcogenide nanosheets. Chem. Soc. Rev. 2018, 47, 3301–3338.

[37]

Cheng, H. F.; Yang, N. L.; Lu, Q. P.; Zhang, Z. C.; Zhang, H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater. 2018, 30, 1707189.

[38]

Sow, C.; P, Suchithra, P.; Mettela, G.; Kulkarni, G. U. Noble metal nanomaterials with nontraditional crystal structures. Annu. Rev. Mater. Res. 2020, 50, 345–370.

[39]

Li, H. Y.; Wang, X. Phase control in inorganic nanocrystals through finely tuned growth at an ultrathin scale. Acc. Chem. Res. 2019, 52, 780–790.

[40]

Park, S.; Kim, C.; Park, S. O.; Oh, N. K.; Kim, U.; Lee, J.; Seo, J.; Yang, Y. J.; Lim, H. Y.; Kwak, S. K. et al. Phase engineering of transition metal dichalcogenides with unprecedentedly high phase purity, stability, and scalability via molten-metal-assisted intercalation. Adv. Mater. 2020, 32, 2001889.

[41]

Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

[42]

Ge, Y. Y.; Shi, Z. Y.; Tan, C. L.; Chen, Y.; Cheng, H. F.; He, Q. Y.; Zhang, H. Two-dimensional nanomaterials with unconventional phases. Chem 2020, 6, 1237–1253.

[43]

Li, H. X.; Zhou, X. C.; Zhai, W.; Lu, S. Y.; Liang, J. Z.; He, Z.; Long, H. W.; Xiong, T. F.; Sun, H. Y.; He, Q. Y. et al. Phase engineering of nanomaterials for clean energy and catalytic applications. Adv. Energy Mater. 2020, 10, 2002019.

[44]

Lu, S. Y.; Liang, J. Z.; Long, H. W.; Li, H. X.; Zhou, X. C.; He, Z.; Chen, Y.; Sun, H. Y.; Fan, Z. X.; Zhang, H. Crystal phase control of gold nanomaterials by wet-chemical synthesis. Acc. Chem. Res. 2020, 53, 2106–2118.

[45]

Liu, J. W.; Huang, J. T.; Niu, W. X.; Tan, C. L.; Zhang, H. Unconventional-phase crystalline materials constructed from multiscale building blocks. Chem. Rev. 2021, 121, 5830–5888.

[46]
Zhou, M.; Liu, J. W.; Ling, C. Y.; Ge, Y. Y.; Chen, B.; Tan, C. L.; Fan, Z. X.; Huang, J. T.; Chen, J. Z.; Liu, Z. Q. et al. Synthesis of Pd3Sn and PdCuSn nanorods with L12 phase for highly efficient electrocatalytic ethanol oxidation. Adv. Mater., in press, DOI: 10.1002/adma.202106115.
[47]

Zhou, M.; Guo, J. N.; Zhao, B.; Li, C.; Zhang, L. H.; Fang, J. Y. Improvement of oxygen reduction performance in alkaline media by tuning phase structure of Pd-Bi nanocatalysts. J. Am. Chem. Soc. 2021, 143, 15891–15897.

[48]

Hong, S.; Lee, C. S.; Lee, M. H.; Lee, Y.; Ma, K. Y.; Kim, G.; Yoon, S. I.; Ihm, K.; Kim, K. J.; Shin, T. J. et al. Ultralow-dielectric-constant amorphous boron nitride. Nature 2020, 582, 511–514.

[49]

Toh, C.; Zhang, H. J.; Lin, J. H.; Mayorov, A. S.; Wang, Y. P.; Orofeo, C. M.; Ferry, D. B.; Andersen, H.; Kakenov, N.; Guo, Z. L. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 2020, 577, 199–203.

[50]

Yan, W.; Richard, I.; Kurtuldu, G.; James, N. D.; Schiavone, G.; Squair, J. W.; Nguyen-Dang, T.; Das Gupta, T.; Qu, Y. P.; Cao, J. D. et al. Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat. Nanotechnol. 2020, 15, 875–882.

[51]

Croissant, J. G.; Butler, K. S.; Zink, J. I.; Brinker, C. J. Synthetic amorphous silica nanoparticles: Toxicity, biomedical and environmental implications. Nat. Rev. Mater. 2020, 5, 886–909.

[52]

Zhang, X.; Luo, Z. M.; Yu, P.; Cai, Y. Q.; Du, Y. H.; Wu, D. X.; Gao, S.; Tan, C. L.; Li, Z.; Ren, M. Q. et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 2018, 1, 460–468.

[53]

Anantharaj, S.; Noda, S. Amorphous catalysts and electrochemical water splitting: An untold story of harmony. Small 2020, 16, 1905779.

[54]
Li, X. Y.; Cai, W. Z.; Li, D. S.; Xu, J.; Tao, H. B.; Liu, B. Amorphous alloys for electrocatalysis: The significant role of the amorphous alloy structure. Nano Res., in press, DOI: 10.1007/s12274-021-3682-7.
[55]

Zhao, H. W.; Chen, X. J.; Wang, G. Z.; Qiu, Y. F.; Guo, L. Two-dimensional amorphous nanomaterials: Synthesis and applications. 2D Mater. 2019, 6, 032002.

[56]

Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. P.; Lu, Q. P. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, 1803234.

[57]

Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

[58]

Wang, X. F.; Pawar, G.; Li, Y. J.; Ren, X. D.; Zhang, M. H.; Lu, B. Y.; Banerjee, A.; Liu, P.; Dufek, E. J.; Zhang, J. G. et al. Glassy Li metal anode for high-performance rechargeable Li batteries. Nat. Mater. 2020, 19, 1339–1345.

[59]

Wu, G.; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.

[60]

Sun, Y. J.; Liang, Y. X.; Luo, M. C.; Lv, F.; Qin, Y. N.; Wang, L.; Xu, C.; Fu, E. G.; Guo, S. J. Defects and interfaces on PtPb nanoplates boost fuel cell electrocatalysis. Small 2018, 14, 1702259.

[61]

Ma, L. L.; Zhou, Y. L.; Zhang, Z. W. B.; Liu, Y. Q.; Zhai, D.; Zhuang, H.; Li, Q.; Yuye, J. D.; Wu, C. T.; Chang, J. Multifunctional bioactive Nd-Ca-Si glasses for fluorescence thermometry, photothermal therapy, and burn tissue repair. Sci. Adv. 2020, 6, eabb1311.

[62]

Nagase, T.; Nino, A.; Hosokawa, T.; Umakoshi, Y. Electron irradiation induced crystal-to-amorphous-to-crystal transition in some metallic glasses. Mater. Trans. 2007, 48, 1651–1658.

[63]

Tan, C. L.; Zhang, H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 2015, 6, 7873.

[64]

Cai, W. Z.; Chen, R.; Yang, H. B.; Tao, H. B.; Wang, H. Y.; Gao, J. J.; Liu, W.; Liu, S.; Hung, S. F.; Liu, B. Amorphous versus crystalline in water oxidation catalysis: A case study of NiFe alloy. Nano Lett. 2020, 20, 4278–4285.

[65]

Lu, C. H.; Chang, F. C. Polyhedral oligomeric silsesquioxane-encapsulating amorphous palladium nanoclusters as catalysts for heck reactions. ACS Catal. 2011, 1, 481–488.

[66]

Ge, Y. Y.; Huang, Z. Q.; Ling, C. Y.; Chen, B.; Liu, G. G.; Zhou, M.; Liu, J. W.; Zhang, X.; Cheng, H. F.; Liu, G. H. et al. Phase-selective epitaxial growth of heterophase nanostructures on unconventional 2H-Pd nanoparticles. J. Am. Chem. Soc. 2020, 142, 18971–18980.

[67]

Duan, Y. X.; Meng, F. L.; Liu, K. H.; Yi, S. S.; Li, S. J.; Yan, J. M.; Jiang, Q. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies. Adv. Mater. 2018, 30, 1706194.

[68]

Yan, J. M.; Zhang, X. B.; Han, S.; Shioyama, H.; Xu, Q. Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Angew. Chem., Int. Ed. 2008, 47, 2287–2289.

[69]

Corthey, G.; Rubert, A. A.; Picone, A. L.; Casillas, G.; Giovanetti, L. J.; Ramallo-López, J. M.; Zelaya, E.; Benitez, G. A.; Requejo, F. G.; José-Yacamán, M. et al. New insights into the chemistry of thiolate-protected palladium nanoparticles. J. Phys. Chem. C 2012, 116, 9830–9837.

[70]

Cheng, H. F.; Yang, N. L.; Liu, G. G.; Ge, Y. Y.; Huang, J. T.; Yun, Q. B.; Du, Y. H.; Sun, C. J.; Chen, B.; Liu, J. W. et al. Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction. Adv. Mater. 2020, 32, 1902964.

[71]

Liu, Y.; Wang, C.; Wei, Y. J.; Zhu, L. Y.; Li, D. G.; Jiang, J. S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. H. Surfactant-induced postsynthetic modulation of Pd nanoparticle crystallinity. Nano Lett. 2011, 11, 1614–1617.

[72]

Shi, M. M.; Bao, D.; Li, S. J.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater. 2018, 8, 1800124.

[73]

Wen, M.; Wang, Y. F.; Wu, Q. S.; Jin, Y.; Cheng, M. Z. Controlled fabrication of 0 & 2D NiCu amorphous nanoalloys by the cooperation of hard-soft interfacial templates. J. Colloid Interface Sci. 2010, 342, 229–235.

[74]

Fang, Z. W.; Wu, P.; Qian, Y. M.; Yu, G. H. Gel-derived amorphous bismuth-nickel alloy promotes electrocatalytic nitrogen fixation via optimizing nitrogen adsorption and activation. Angew. Chem., Int. Ed. 2021, 60, 4275–4281.

[75]

Li, J. J.; Chen, J. C.; Wang, H.; Chen, N.; Wang, Z. C.; Guo, L.; Deepak, F. L. In situ atomic-scale study of particle-mediated nucleation and growth in amorphous bismuth to nanocrystal phase transformation. Adv. Sci. 2018, 5, 1700992.

[76]

Zhao, Y. G.; Liu, J. J.; Liu, C. G.; Wang, F.; Song, Y. Amorphous CuPt alloy nanotubes induced by Na2S2O3 as efficient catalysts for the methanol oxidation reaction. ACS Catal. 2016, 6, 4127–4134.

[77]

Wang, W. C.; He, T. O.; Yang, X. L.; Liu, Y. M.; Wang, C. Q.; Li, J.; Xiao, A. D.; Zhang, K.; Shi, X. T.; Jin, M. S. General synthesis of amorphous PdM (M = Cu, Fe, Co, Ni) alloy nanowires for boosting HCOOH dehydrogenation. Nano Lett. 2021, 21, 3458–3464.

[78]

Lin, Z. Y.; Du, C.; Yan, B.; Wang, C. X.; Yang, G. W. Two-dimensional amorphous NiO as a plasmonic photocatalyst for solar H2 evolution. Nat. Commun. 2018, 9, 4036.

[79]

Lin, Z. Y.; Du, C.; Yan, B.; Yang, G. W. Two-dimensional amorphous CoO photocatalyst for efficient overall water splitting with high stability. J. Catal. 2019, 372, 299–310.

[80]

Liu, W.; Xu, Q.; Cui, W. L.; Zhu, C. H.; Qi, Y. H. CO2-assisted fabrication of two-dimensional amorphous molybdenum oxide nanosheets for enhanced plasmon resonances. Angew. Chem., Int. Ed. 2017, 56, 1600–1604.

[81]

Chen, W. L.; Ma, Y. L.; Li, F.; Pan, L.; Gao, W. P.; Xiang, Q.; Shang, W.; Song, C. Y.; Tao, P.; Zhu, H. et al. Strong electronic interaction of amorphous Fe2O3 nanosheets with single-atom Pt toward enhanced carbon monoxide oxidation. Adv. Funct. Mater. 2019, 29, 1904278.

[82]

Indra, A.; Menezes, P. W.; Sahraie, N. R.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeißer, D.; Strasser, P.; Driess, M. Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc. 2014, 136, 17530–17536.

[83]

Zhao, H. W.; Zhu, Y. J.; Li, F. S.; Hao, R.; Wang, S. X.; Guo, L. A generalized strategy for the synthesis of large-size ultrathin two-dimensional metal oxide nanosheets. Angew. Chem., Int. Ed. 2017, 56, 8766–8770.

[84]

Bao, H. M.; Zhang, H. W.; Liu, G. Q.; Li, Y.; Cai, W. P. Nanoscaled amorphous TiO2 hollow spheres: TiCl4 liquid droplet-based hydrolysis fabrication and strong hollow structure-enhanced surface-enhanced Raman scattering effects. Langmuir 2017, 33, 5430–5438.

[85]

Duan, Y.; Yu, Z. Y.; Hu, S. J.; Zheng, X. S.; Zhang, C. T.; Ding, H. H.; Hu, B. C.; Fu, Q. Q.; Yu, Z. L.; Zheng, X. et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew. Chem., Int. Ed. 2019, 58, 15772–15777.

[86]

Ma, J. Y.; Tan, X. J.; Ma, Y. F.; Yao, X. Y.; Zhang, J. H.; Wang, L. Z. Facile fabrication of amorphous molybdenum oxide as a sensitive and stable SERS substrate under redox treatment. Chem. -Eur. J. 2020, 26, 2653–2657.

[87]

Nai, J. W.; Tian, Y.; Guan, X.; Guo, L. Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 2013, 135, 16082–16091.

[88]

Liu, J. Z.; Nai, J. W.; You, T. T.; An, P. F.; Zhang, J.; Ma, G. S.; Niu, X. G.; Liang, C. Y.; Yang, S. H.; Guo, L. The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction. Small 2018, 14, 1703514.

[89]

Jia, B. B.; Hao, R.; Huang, Z. N.; Hu, P. F.; Li, L. D.; Zhang, Y.; Guo, L. Creating ultrathin amorphous metal hydroxide and oxide nanosheet libraries. J. Mater. Chem. A 2019, 7, 4383–4388.

[90]

Liu, J. Z.; Ji, Y. F.; Nai, J. W.; Niu, X. G.; Luo, Y.; Guo, L.; Yang, S. H. Ultrathin amorphous cobalt-vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction. Energy Environ. Sci. 2018, 11, 1736–1741.

[91]

Zhou, Y. N.; Xu, Q.; Ge, T. P.; Zheng, X. L.; Zhang, L.; Yan, P. F. Accurate control of VS2 nanosheets for coexisting high photoluminescence and photothermal conversion efficiency. Angew. Chem., Int. Ed. 2020, 59, 3322–3328.

[92]

Li, P. S.; Duan, X. X.; Wang, S. Y.; Zheng, L. R.; Li, Y. P.; Duan, H. H.; Kuang, Y.; Sun, X. M. Amorphous ruthenium-sulfide with isolated catalytic sites for Pt-like electrocatalytic hydrogen production over whole pH range. Small 2019, 15, 1904043.

[93]

Li, A. R.; Lin, J.; Huang, Z. N.; Wang, X. T.; Guo, L. Surface-enhanced Raman spectroscopy on amorphous semiconducting rhodium sulfide microbowl substrates. iScience 2018, 10, 1–10.

[94]

Yang, X.; Wu, R.; Liu, H. Y.; Fan, H. M.; Zhang, H. Y.; Sun, Y. F. Amorphous molybdenum selenide as highly efficient photocatalyst for the photodegradation of organic dyes under visible light. Appl. Surf. Sci. 2018, 457, 214–220.

[95]

Yang, Z. Q.; Li, H. L.; Yang, J. W.; Yang, Q.; Zhao, J. X.; Yang, J. P.; Qu, W. Q.; Feng, Y.; Shih, K. Amorphous molybdenum selenide nanosheet as an efficient trap for the permanent sequestration of vapor-phase elemental mercury. Adv. Sci. 2019, 6, 1901410.

[96]

Wang, J.; Huang, B. L.; Ji, Y. J.; Sun, M. Z.; Wu, T.; Yin, R. G.; Zhu, X.; Li, Y. Y.; Shao, Q.; Huang, X. Q. A general strategy to glassy M-Te (M = Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation. Adv. Mater. 2020, 32, 1907112.

[97]

Tong, D. G.; Wang, D.; Chu, W.; Sun, J. H.; Wu, P. Cobalt-boron amorphous alloy prepared in water/cetyl-trimethyl-ammonium bromide/n-hexanol microemulsion as anode for alkaline secondary batteries. Electrochim. Acta 2010, 55, 2299–2305.

[98]

Kiani, M. T.; Barr, C. M.; Xu, S. C.; Doan, D.; Wang, Z. X.; Parakh, A.; Hattar, K.; Gu, X. W. Ductile metallic glass nanoparticles via colloidal synthesis. Nano Lett. 2020, 20, 6481–6487.

[99]

van Wonterghem, J.; Mørup, S.; Koch, C. J. W.; Charles, S. W.; Wells, S. Formation of ultra-fine amorphous alloy particles by reduction in aqueous solution. Nature 1986, 322, 622–623.

[100]

Liu, G.; He, D. Y.; Yao, R.; Zhao, Y.; Li, J. P. Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting. Nano Res. 2018, 11, 1664–1675.

[101]

Rajesh, B.; Sasirekha, N.; Chen, Y. W. Physicochemical and catalytic properties of Fe-P ultrafine amorphous catalysts. J. Mol. Catal. A:Chem. 2007, 275, 174–182.

[102]

Kumar, V. B.; Kimmel, G.; Porat, Z.; Gedanken, A. Formation of particles of bismuth-based binary alloys and intermetallic compounds by ultrasonic cavitation. New J. Chem. 2015, 39, 5374–5381.

[103]
Reardon, A. C. Metallurgy for the Non-Metallurgist; ASM International: Materials Park, OH, USA, 2011.
[104]

Lei, Y. D.; Tang, Z. H.; Liao, R. J.; Guo, B. C. Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide. Green Chem. 2011, 13, 1655–1658.

[105]

Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

[106]

Yun, Q. B.; Li, L. X.; Hu, Z. N.; Lu, Q. P.; Chen, B.; Zhang, H. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv. Mater. 2020, 32, 1903826.

[107]

Darr, J. A.; Zhang, J. Y.; Makwana, N. M.; Weng, X. L. Continuous hydrothermal synthesis of inorganic nanoparticles: Applications and future directions. Chem. Rev. 2017, 117, 11125–11238.

[108]

Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

[109]

Gao, Q.; Huang, C. Q.; Ju, Y. M.; Gao, M. R.; Liu, J. W.; An, D.; Cui, C. H.; Zheng, Y. R.; Li, W. W.; Yu, S. H. Phase-selective syntheses of cobalt telluride nanofleeces for efficient oxygen evolution catalysts. Angew. Chem., Int. Ed. 2017, 56, 7769–7773.

[110]

Li, H.; Yang, H. X.; Li, H. X. Highly active mesoporous Co-B amorphous alloy catalyst for cinnamaldehyde hydrogenation to cinnamyl alcohol. J. Catal. 2007, 251, 233–238.

[111]

Du, X. Q.; Yang, C. L.; Zeng, X.; Wu, T.; Zhou, Y. H.; Cai, P.; Cheng, G. Z.; Luo, W. Amorphous NiP supported on rGO for superior hydrogen generation from hydrolysis of ammonia borane. Int. J. Hydrog. Energy 2017, 42, 14181–14187.

[112]

Li, Z. P.; Shang, J. P.; Su, C. N.; Zhang, S. B.; Wu, M. X.; Guo, Y. Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions. J. Fuel Chem. Technol. 2018, 46, 473–478.

[113]

Hausleitner, C.; Hafner, J. Structural modeling of transition-metal-metalloid glasses by use of tight-binding-bond forces. Phys. Rev. B 1993, 47, 5689–5709.

[114]

Pei, Y.; Zhou, G. B.; Luan, N.; Zong, B. N.; Qiao, M. H.; Tao, F. Synthesis and catalysis of chemically reduced metal-metalloid amorphous alloys. Chem. Soc. Rev. 2012, 41, 8140–8162.

[115]

Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469.

[116]

Yin, P. F.; Zhou, M.; Chen, J. Z.; Tan, C. L.; Liu, G. G.; Ma, Q. L.; Yun, Q. B.; Zhang, X.; Cheng, H. F.; Lu, Q. P. et al. Synthesis of palladium-based crystalline@amorphous core-shell nanoplates for highly efficient ethanol oxidation. Adv. Mater. 2020, 32, 2000482.

[117]

Cheng, H. F.; Yang, N. L.; Liu, X. Z.; Yun, Q. B.; Goh, M. H.; Chen, B.; Qi, X. Y.; Lu, Q. P.; Chen, X. P.; Liu, W. et al. Aging amorphous/crystalline heterophase PdCu nanosheets for catalytic reactions. Natl. Sci. Rev. 2019, 6, 955–961.

[118]

Ge, J. J.; Yin, P. Q.; Chen, Y.; Cheng, H. F.; Liu, J. W.; Chen, B.; Tan, C. L.; Yin, P. F.; Zheng, H. X.; Li, Q. Q. et al. Ultrathin amorphous/crystalline heterophase Rh and Rh alloy nanosheets as tandem catalysts for direct indole synthesis. Adv. Mater. 2021, 33, 2006711.

[119]

Zhao, X.; Wang, H. E.; Cao, J.; Cai, W.; Sui, J. H. Amorphous/crystalline hybrid MoO2 nanosheets for high-energy lithium-ion capacitors. Chem. Commun. 2017, 53, 10723–10726.

[120]

Ren, Y. M.; Xu, Q.; Zheng, X. L.; Fu, Y. Z.; Wang, Z.; Chen, H. L.; Weng, Y. X.; Zhou, Y. C. Building of peculiar heterostructure of Ag/two-dimensional fullerene shell-WO3−x for enhanced photoelectrochemical performance. Appl. Catal. B:Environ. 2018, 231, 381–390.

[121]

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

[122]

Kuang, M.; Zhang, J. M.; Liu, D. B.; Tan, H. T.; Dinh, K. N.; Yang, L.; Ren, H.; Huang, W. J.; Fang, W.; Yao, J. D. et al. Amorphous/crystalline heterostructured cobalt-vanadium-iron (oxy)hydroxides for highly efficient oxygen evolution reaction. Adv. Energy Mater. 2020, 10, 2002215.

[123]

Yang, Q.; Wu, Q. L.; Liu, Y.; Luo, S. P.; Wu, X. T.; Zhao, X.; Zou, H.; Long, B.; Chen, W.; Liao, Y. et al. Novel Bi-doped amorphous SnOx nanoshells for efficient electrochemical CO2 reduction into formate at low overpotentials. Adv. Mater. 2020, 32, 2002822.

[124]

Cao, D.; Wang, J. Y.; Xu, H. X.; Cheng, D. J. Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values. Small 2020, 16, 2000924.

[125]

Wang, Y.; Chen, Z.; Shen, R. A.; Cao, X.; Chen, Y. G.; Chen, C.; Wang, D. S.; Peng, Q.; Li, Y. D. Pd-dispersed CuS hetero-nanoplates for selective hydrogenation of phenylacetylene. Nano Res. 2016, 9, 1209–1219.

[126]

Cao, X.; Chen, Z.; Lin, R.; Cheong, W. C.; Liu, S. J.; Zhang, J.; Peng, Q.; Chen, C.; Han, T.; Tong, X. J. et al. A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C–H bonds in toluene. Nat. Catal. 2018, 1, 704–710.

[127]

Dong, Z. H.; Lin, F.; Yao, Y. H.; Jiao, L. F. Crystalline Ni(OH)2/amorphous NiMoOx mixed-catalyst with Pt-like performance for hydrogen production. Adv. Energy Mater. 2019, 9, 1902703.

[128]

Huang, X.; Liu, Z. Q.; Millet, M. M.; Dong, J. C.; Plodine, M.; Ding, F.; Schlögl, R.; Willinger, M. G. In situ atomic-scale observation of surface-tension-induced structural transformation of Ag-NiPx core-shell nanocrystals. ACS Nano 2018, 12, 7197–7205.

[129]

Wang, P. T.; Qiao, M.; Shao, Q.; Pi, Y. C.; Zhu, X.; Li, Y. F.; Huang, X. Q. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 4933.

[130]

Wang, P. T.; Ji, Y. J.; Shao, Q.; Li, Y. Y.; Huang, X. Q. Core@shell structured Au@SnO2 nanoparticles with improved N2 adsorption/activation and electrical conductivity for efficient N2 fixation. Sci. Bull. 2020, 65, 350–358.

[131]

Li, X. Y.; Xiao, L. P.; Zhou, L.; Xu, Q. C.; Weng, J.; Xu, J.; Liu, B. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide @ 2D black phosphorus for overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 21106–21113.

[132]

He, T. O.; Wang, W. C.; Yang, X. L.; Shi, F. L.; Ye, Z. Y.; Zheng, Y. Z.; Li, F.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Deposition of atomically thin Pt shells on amorphous palladium phosphide cores for enhancing the electrocatalytic durability. ACS Nano 2021, 15, 7348–7356.

[133]

He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.

[134]

Yang, J. P.; Wang, Y. X.; Li, W.; Wang, L. J.; Fan, Y. C.; Jiang, W.; Luo, W.; Wang, Y.; Kong, B.; Selomulya, C. et al. Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv. Mater. 2017, 29, 1700523.

[135]

Lv, F.; Zhang, W. Y.; Sun, M. Z.; Lin, F. X.; Wu, T.; Zhou, P.; Yang, W. X.; Gao, P.; Huang, B. L.; Guo, S. J. Au clusters on Pd nanosheets selectively switch the pathway of ethanol electrooxidation: Amorphous/crystalline interface matters. Adv. Energy Mater. 2021, 11, 2100187.

[136]

He, D. P.; Zhang, L. B.; He, D. S.; Zhou, G.; Lin, Y.; Deng, Z. X.; Hong, X.; Wu, Y.; Chen, C.; Li, Y. D. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction. Nat. Commun. 2016, 7, 12362.

[137]

Yang, C. Y.; Huang, B. L.; Bai, S. X.; Feng, Y. G.; Shao, Q.; Huang, X. Q. A generalized surface chalcogenation strategy for boosting the electrochemical N2 fixation of metal nanocrystals. Adv. Mater. 2020, 32, 2001267.

[138]

Li, P. X.; Fu, W. Z.; Zhuang, P. Y.; Cao, Y. D.; Tang, C.; Watson, A. B.; Dong, P.; Shen, J. F.; Ye, M. X. Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation. Small 2019, 15, 1902535.

[139]

Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260.

[140]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[141]

Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.

[142]

Wang, J.; Han, L. L.; Huang, B. L.; Shao, Q.; Xin, H. L.; Huang, X. Q. Amorphization activated ruthenium-tellurium nanorods for efficient water splitting. Nat. Commun. 2019, 10, 5692.

[143]

Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araújo, J. F.; Reier, T.; Dau, H.; Strasser, P. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 2015, 6, 8625.

[144]

Hu, F.; Zhu, S. L.; Chen, S. M.; Li, Y.; Ma, L.; Wu, T. P.; Zhang, Y.; Wang, C. M.; Liu, C. C.; Yang, X. J. et al. Amorphous metallic NiFeP: A conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv. Mater. 2017, 29, 1606570.

[145]

Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

[146]

Zhang, S.; Kang, P.; Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 2014, 136, 1734–1737.

[147]

Cheng, T.; Xiao, H.; Goddard III, W. A. Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu(100) surface at 298 K from quantum mechanics free energy calculations with explicit water. J. Am. Chem. Soc. 2016, 138, 13802–13805.

[148]

Xie, H.; Wang, T. Y.; Liang, J. S.; Li, Q.; Sun, S. H. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41–54.

[149]

Guo, W. H.; Zhang, K. X.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658–5716.

[150]

Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.

[151]

Krivec, M.; Segundo, R. A.; Faria, J. L.; Silva, A. M. T.; Dražić, G. Low-temperature synthesis and characterization of rutile nanoparticles with amorphous surface layer for photocatalytic degradation of caffeine. Appl. Catal. B: Environ. 2013, 140–141, 9–15.

[152]

Huang, H. J.; Wang, X.; Tervoort, E.; Zeng, G. B.; Liu, T.; Chen, X.; Sologubenko, A.; Niederberger, M. Nano-sized structurally disordered metal oxide composite aerogels as high-power anodes in hybrid supercapacitors. ACS Nano 2018, 12, 2753–2763.

[153]

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

[154]

Chen, X. Y.; Yang, W. L.; Wang, S.; Qiao, M. H.; Yan, S. R.; Fan, K. N.; He, H. Amorphous Ni-B hollow spheres synthesized by controlled organization of Ni-B nanoparticles over PS beads via surface seeding/electroless plating. New J. Chem. 2005, 29, 266–268.

[155]

Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 2013, 4, 1894.

[156]
Liu, Z. J.; Zheng, F. F.; Xiong, W. W.; Li, X. G.; Yuan, A. H.; Pang, H. Strategies to improve electrochemical performances of pristine metal-organic frameworks-based electrodes for lithium/sodium-ion batteries. SmartMat, in press, DOI: 10.1002/smm2.1064.
[157]

Zhao, C. S.; Zhang, H. T.; Si, W. J.; Wu, H. Mass production of two-dimensional oxides by rapid heating of hydrous chlorides. Nat. Commun. 2016, 7, 12543.

[158]

Fang, S.; Bresser, D.; Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv. Energy Mater. 2020, 10, 1902485.

[159]

Chae, O. B.; Kim, J.; Park, I.; Jeong, H.; Ku, J. H.; Ryu, J. H.; Kang, K.; Oh, S. M. Reversible lithium storage at highly populated vacant sites in an amorphous vanadium pentoxide electrode. Chem. Mater. 2014, 26, 5874–5881.

[160]

Li, Q.; Xu, Y. X.; Zheng, S. S.; Guo, X. T.; Xue, H. G.; Pang, H. Recent progress in some amorphous materials for supercapacitors. Small 2018, 14, 1800426.

[161]

Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950.

Publication history
Copyright
Acknowledgements

Publication history

Received: 06 October 2021
Revised: 09 November 2021
Accepted: 20 November 2021
Published: 20 December 2021
Issue date: April 2023

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the grants (Nos. 9610478, 9680314, 7020013, and 1886921), the Start-Up Grant (No. 9380100), ITC via the Hong Kong Branch of the National Precious Metals Material Engineering Research Center (NPMM) from City University of Hong Kong, the Research Grants Council of Hong Kong, China (No. AoE/P-701/20), and the Science Technology and Innovation Committee of Shenzhen Municipality (Nos. JCYJ20200109143412311 and SGDX2020110309300301, “Preparation of single atoms on transition metal chalcogenides for electrolytic hydrogen evolution”, CityU).

Return