Journal Home > Volume 15 , Issue 5

Hybrid-phase metal-organic frameworks (MOFs) are a class of intriguing heterostructures for diverse applications, the properties of which are governed by their chemical composition, framework topology, and morphology. Herein, we report the structural and morphological evolution of flexible MOFs induced by the lattice change of template during heteroepitaxial growth. We demonstrate that the epitaxially grown flexible Fe-MOFs can be varied from one structure to another to adapt to the lattice of the template Zr-MOFs. Thus, flexible Fe-MOFs with similar chemical compositions and topology can be epitaxially grown on different Zr-MOFs over huge lattice constant gradient. We also demonstrate that the morphology of the heterostructures is affected by the degree of lattice difference between the template MOFs and the epitaxial MOFs. The reported results could pave the way toward the rational design of hybrid-phase MOFs guided by the principles of reticular chemistry.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flexible-on-rigid heteroepitaxial metal-organic frameworks induced by template lattice change

Show Author's information XiaoGang WangHan Cheng§( )XianZheng Zhang§( )
Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China

§ Han Cheng and XianZheng Zhang contributed equally to this work.

Abstract

Hybrid-phase metal-organic frameworks (MOFs) are a class of intriguing heterostructures for diverse applications, the properties of which are governed by their chemical composition, framework topology, and morphology. Herein, we report the structural and morphological evolution of flexible MOFs induced by the lattice change of template during heteroepitaxial growth. We demonstrate that the epitaxially grown flexible Fe-MOFs can be varied from one structure to another to adapt to the lattice of the template Zr-MOFs. Thus, flexible Fe-MOFs with similar chemical compositions and topology can be epitaxially grown on different Zr-MOFs over huge lattice constant gradient. We also demonstrate that the morphology of the heterostructures is affected by the degree of lattice difference between the template MOFs and the epitaxial MOFs. The reported results could pave the way toward the rational design of hybrid-phase MOFs guided by the principles of reticular chemistry.

Keywords: heterostructure, metal-organic framework (MOF), structural evolution, heteroepitaxial growth, MOF-on-MOF

References(35)

1

Freund, R.; Canossa, S.; Cohen, S. M.; Yan, W.; Deng, H. X.; Guillerm, V.; Eddaoudi, M.; Madden, D. G.; Fairen-Jimenez, D.; Lyu, H. et al. 25 years of reticular chemistry. Angew. Chem., Int. Ed. 2021, 60, 23946–23974.

2

Feng, L.; Wang, K. Y.; Willman, J.; Zhou, H. C. Hierarchy in metal-organic frameworks. ACS Cent. Sci. 2020, 6, 359–367.

3

Haldar, R.; Wöll, C. Hierarchical assemblies of molecular frameworks—MOF-on-MOF epitaxial heterostructures. Nano Res. 2021, 14, 355–368.

4

Shan, Y. Y.; Chen, L. Y.; Pang, H.; Xu, Q. Metal-organic framework-based hybrid frameworks. Small Struct. 2021, 2, 2000078.

5

Liu, C.; Wang, J.; Wan, J. J.; Yu, C. Z. MOF-on-MOF hybrids: Synthesis and applications. Coord. Chem. Rev. 2021, 432, 213743.

6

Gu, Y. F.; Wu, Y. N.; Li, L. C.; Chen, W.; Li, F. T.; Kitagawa, S. Controllable modular growth of hierarchical MOF-on-MOF architectures. Angew. Chem., Int. Ed. 2017, 56, 15658–15662.

7

Ikigaki, K.; Okada, K.; Tokudome, Y.; Toyao, T.; Falcaro, P.; Doonan, C. J. Takahashi, M. Oriented growth of multiple layered thin films of metal-organic frameworks. Angew. Chem., Int. Ed. 2019, 58, 6886–6890.

8

Lee, G.; Lee, S.; Oh, S.; Kim, D.; Oh, M. Tip-to-middle anisotropic MOF-on-MOF growth with a structural adjustment. J. Am. Chem. Soc. 2020, 142, 3042–3049.

9

Lee, S.; Oh, S.; Oh, M. A typical hybrid metal-organic frameworks (MOFs): A combinative process for MOF-on-MOF growth, etching, and structure transformation. Angew. Chem., Int. Ed. 2020, 59, 1327–1333.

10

Liu, C.; Sun, Q.; Lin, L. N.; Wang, J.; Zhang, C. Q.; Xia, C. H.; Bao, T.; Wan, J. J.; Huang, R.; Zou, J. et al. Ternary MOF-on-MOF heterostructures with controllable architectural and compositional complexity via multiple selective assembly. Nat. Commun. 2020, 11, 4971.

11

Furukawa, H.; Müller, U.; Yaghi, O. M. “Heterogeneity within order” in metal-organic frameworks. Angew. Chem., Int. Ed. 2015, 54, 3417–3430.

12

Mutruc, D.; Goulet-Hanssens, A.; Fairman, S.; Wahl, S.; Zimathies, A.; Knie, C.; Hecht, S. Modulating guest uptake in core–shell MOFs with visible light. Angew. Chem., Int. Ed. 2019, 58, 12862–12867.

13

Yu, X. J.; Xian, Y. M.; Wang, C.; Mao, H. L.; Kind, M.; Abu-Husein, T.; Chen, Z.; Zhu, S. B.; Ren, B.; Terfort, A. et al. Liquid-phase epitaxial growth of highly oriented and multivariate surface-attached metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 18984–18993.

14

Furukawa, S.; Hirai, K.; Nakagawa, K.; Takashima, Y.; Matsuda, R.; Tsuruoka, T.; Kondo, M.; Haruki, R.; Tanaka, D.; Sakamoto, H. et al. Heterogeneously hybridized porous coordination polymer crystals: Fabrication of heterometallic core–shell single crystals with an in-plane rotational epitaxial relationship. Angew. Chem., Int. Ed. 2009, 48, 1766–1770.

15

Choi, S.; Kim, T.; Ji, H.; Lee, H. J.; Oh, M. Isotropic and anisotropic growth of metal-organic framework (MOF) on MOF: Logical inference on MOF structure based on growth behavior and morphological feature. J. Am. Chem. Soc. 2016, 138, 14434–14440.

16

Chernikova, V.; Shekhah, O.; Spanopoulos, I.; Trikalitis, P. N.; Eddaoudi, M. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films. Chem. Commun. 2017, 53, 6191–6194.

17

Kwon, O.; Kim, J. Y.; Park, S.; Lee, J. H.; Ha, J.; Park, H.; Moon, H. R.; Kim, J. Computer-aided discovery of connected metal-organic frameworks. Nat. Commun. 2019, 10, 3620.

18

Zhao, M. T.; Chen, J. Z.; Chen, B.; Zhang, X.; Shi, Z. Y.; Liu, Z. Q.; Ma, Q. L.; Peng, Y. W.; Tan, C. L.; Wu, X. J. et al. Selective epitaxial growth of oriented hierarchical metal-organic framework heterostructures. J. Am. Chem. Soc. 2020, 142, 8953–8961.

19

Wang, X. G.; Xu, L.; Li, M. J.; Zhang, X. Z. Construction of flexible-on-rigid hybrid-phase metal-organic frameworks for controllable multi-drug delivery. Angew. Chem., Int. Ed. 2020, 59, 18078–18086.

20

Ha, J.; Moon, H. R. Synthesis of MOF-on-MOF architectures in the context of interfacial lattice matching. CrystEngComm 2021, 23, 2337–2354.

21

Wißmann, G.; Schaate, A.; Lilienthal, S.; Bremer, I.; Schneider, A. M.; Behrens, P. Modulated synthesis of Zr-fumarate MOF. Microporous Mesoporous Mater. 2012, 152, 64–70.

22

Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.

23

Bon, V.; Senkovska, I.; Weiss, M. S.; Kaskel, S. Tailoring of network dimensionality and porosity adjustment in Zr- and Hf-based MOFs. CrystEngComm 2013, 15, 9572–9577.

24

Lv, X. L.; Tong, M. M.; Huang, H. L.; Wang, B.; Gan, L.; Yang, Q. Y.; Zhong, C. L.; Li, J. R. A high surface area Zr(IV)-based metal-organic framework showing stepwise gas adsorption and selective dye uptake. J. Solid State Chem. 2015, 223, 104–108.

25

Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178.

26

Fateeva, A.; Horcajada, P.; Devic, T.; Serre, C.; Marrot, J.; Grenèche, J. M.; Morcrette, M.; Tarascon, J. M.; Maurin, G.; Férey, G. Synthesis, structure, characterization, and redox properties of the porous MIL-68(Fe) solid. Eur. J. Inorg. Chem. 2010, 2010, 3789–3794.

27

Horcajada, P.; Salles, F.; Wuttke, S.; Devic, T.; Heurtaux, D.; Maurin, G.; Vimont, A.; Daturi, M.; David, O.; Magnier, E. et al. How linker’s modification controls swelling properties of highly flexible iron(III) dicarboxylates MIL-88. J. Am. Chem. Soc. 2011, 133, 17839–17847.

28

Wang, X. G.; Dong, Z. Y.; Cheng, H.; Wan, S. S.; Chen, W. H.; Zou, M. Z.; Huo, J. W.; Deng, H. X.; Zhang, X. Z. A multifunctional metal-organic framework based tumor targeting drug delivery system for cancer therapy. Nanoscale 2015, 7, 16061–16070.

29

Wang, X. G.; Cheng, Q.; Yu, Y.; Zhang, X. Z. Controlled nucleation and controlled growth for size predicable synthesis of nanoscale metal-organic frameworks (MOFs): A general and scalable approach. Angew. Chem., Int. Ed. 2018, 57, 7836–7840.

30

Sudik, A. C.; Côté, A. P.; Yaghi, O. M. Metal-organic frameworks based on trigonal prismatic building blocks and the new “acs” topology. Inorg. Chem. 2005, 44, 2998–3000.

31

Ma, M. Y.; Bétard, A.; Weber, I.; Al-Hokbany, N. S.; Fischer, R. A.; Metzler-Nolte, N. Iron-based metal-organic frameworks MIL-88B and NH2-MIL-88B: High quality microwave synthesis and solvent-induced lattice “breathing”. Cryst. Growth Des 2013, 13, 2286–2291.

32

Vuong, G. T.; Pham, M. H.; Do, T. O. Direct synthesis and mechanism of the formation of mixed metal Fe2Ni-MIL-88B. CrystEngComm 2013, 15, 9694–9703.

33

Serre, C.; Mellot-Draznieks, C.; Surblé, S.; Audebrand, N.; Filinchuk, Y.; Férey, G. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 2007, 315, 1828–1831.

34

Trickett, C. A.; Gagnon, K. J.; Lee, S.; Gándara, F.; Bürgi, H. B.; Yaghi, O. M. Definitive molecular level characterization of defects in UiO-66 crystals. Angew. Chem., Int. Ed. 2015, 54, 11162–11167.

35

Furukawa, H.; Gándara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369–4381.

File
12274_2021_4006_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 September 2021
Revised: 14 November 2021
Accepted: 19 November 2021
Published: 08 December 2021
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51903192, 51833007, 51690152, and 21721005) and China Postdoctoral Science Foundation (No. 2019M652695).

Return