Journal Home > Volume 15 , Issue 5

Long-lasting protective immune responses are expected following vaccination. However, most vaccines alone are inability to evoke an efficient protection. The combinatory administration of adjuvants with vaccines is critical for generating the enhanced immune responses. Herein, with biocompatible poly(4-vinylpyridine) (P4VP) as template, 2.5 nm iron/molybdenum oxide cluster, {Mo72Fe30}, is applied as an adjuvant to co-assemble with antigens of Mycobacterium bovis via hydrogen bonding at molecular scale. Molecular scale integration of the antigens and {Mo72Fe30} and their full exposure to body fluid media contribute to the augmentation of both humoral and cellular immune responses of the vaccines after inoculation in mice. Anti-inflammatory factor IL-10 gradually increases after 2 weeks followed by a final back to normal level by the 5th week. The balance between proinflammatory cytokines and anti-inflammatory factors suggests that immune system can be activated in the early stage of infection by the antigens carried by the supra-particles and secrete acute inflammatory factors for host defense and anti-inflammatory factors for immune protection.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A polymeric co-assembly of subunit vaccine with polyoxometalates induces enhanced immune responses

Show Author's information Xinpei Li1,2Xiaofeng He1,2Dongrong He1,2Yuan Liu1,2Kun Chen1,2( )Panchao Yin1,2( )
South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China

Abstract

Long-lasting protective immune responses are expected following vaccination. However, most vaccines alone are inability to evoke an efficient protection. The combinatory administration of adjuvants with vaccines is critical for generating the enhanced immune responses. Herein, with biocompatible poly(4-vinylpyridine) (P4VP) as template, 2.5 nm iron/molybdenum oxide cluster, {Mo72Fe30}, is applied as an adjuvant to co-assemble with antigens of Mycobacterium bovis via hydrogen bonding at molecular scale. Molecular scale integration of the antigens and {Mo72Fe30} and their full exposure to body fluid media contribute to the augmentation of both humoral and cellular immune responses of the vaccines after inoculation in mice. Anti-inflammatory factor IL-10 gradually increases after 2 weeks followed by a final back to normal level by the 5th week. The balance between proinflammatory cytokines and anti-inflammatory factors suggests that immune system can be activated in the early stage of infection by the antigens carried by the supra-particles and secrete acute inflammatory factors for host defense and anti-inflammatory factors for immune protection.

Keywords: immune response, vaccine adjuvant, co-assembly, metal oxide cluster, supramolecular interaction

References(41)

1

Ke, G. J.; Su, D. K.; Li, Y.; Zhao, Y.; Wang, H. G.; Liu, W. J.; Li, M.; Yang, Z. T.; Xiao, F.; Yuan, Y. et al. An accurate, high-speed, portable bifunctional electrical detector for COVID-19. Sci. China Mater. 2021, 64, 739–747.

2

Escobar, L. E.; Molina-Cruz, A.; Barillas-Mury, C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proc. Natl. Acad. Sci. USA 2020, 117, 27741–27742.

3

Orme, I. M. The Achilles heel of BCG. Tuberculosis 2010, 90, 329–332.

4

Paludan, S. R.; Pradeu, T.; Masters, S. L.; Mogensen, T. H. Constitutive immune mechanisms: Mediators of host defence and immune regulation. Nat. Rev. Immunol. 2021, 21, 137–150.

5

Holmgren, J.; Czerkinsky, C. Mucosal immunity and vaccines. Nat. Med. 2005, 11, S45–S53.

6

Fries, C. N.; Curvino, E. J.; Chen, J. L.; Permar, S. R.; Fouda, G. G.; Collier, J. H. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat. Nanotechnol. 2021, 16, 1–14.

7

Perciani, C. T.; Liu, L. Y.; Wood, L.; MacParland, S. A. Enhancing immunity with nanomedicine: Employing nanoparticles to harness the immune system. ACS Nano 2021, 15, 7–20.

8
Du, R. J.; Qu, Y. J.; Qi, P. X.; Sun, X. B.; Liu, Y. H.; Zhao, M. Natural flagella-templated Au nanowires as a novel adjuvant against Listeria monocytogenes. Nanoscale 2020, 12, 5627–5635.https://doi.org/10.1039/C9NR10095D
DOI
9

Tong, T. Y.; Guan, Y. P.; Gao, Y. J.; Xing, C. Y.; Zhang, S. Q.; Jiang, D. G.; Yang, X. W.; Kang, Y.; Pang, J. Smart nanocarriers as therapeutic platforms for bladder cancer. Nano Res. 2022, 15, 2157–2176.

10

Li, M. M.; Zhao, X. R.; Dai, J. F.; Yu, Z. L. Peptide therapeutics and assemblies for cancer immunotherapy. Sci. China Mater. 2019, 62, 1759–1781.

11

Gu, Z.; Biswas, A.; Zhao, M. X.; Tang, Y. Tailoring nanocarriers for intracellular protein delivery. Chem. Soc. Rev. 2011, 40, 3638–3655.

12

Nembrini, C.; Stano, A.; Dane, K. Y.; Ballester, M.; van der Vlies, A. J.; Marsland, B. J.; Swartz, M. A.; Hubbell, J. A. Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. Proc. Natl. Acad. Sci. USA 2011, 108, E989–E997.

13

Singh, A. Eliciting B cell immunity against infectious diseases using nanovaccines. Nat. Nanotechnol. 2021, 16, 16–24.

14

Li, X.; Pan, C.; Sun, P.; Peng, Z. H.; Feng, E. L.; Wu, J.; Wang, H. L.; Zhu, L. Orthogonal modular biosynthesis of nanoscale conjugate vaccines for vaccination against infection. Nano Res. 2022, 15, 1645–1653.

15

Shen, H.; Ackerman, A. L.; Cody, V.; Giodini, A.; Hinson, E. R.; Cresswell, P.; Edelson, R. L.; Saltzman, W. M.; Hanlon, D. J. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 2006, 117, 78–88.

16

Chan, J. D.; Lai, J. Y.; Slaney, C. Y.; Kallies, A.; Beavis, P. A.; Darcy, P. K. Cellular networks controlling T cell persistence in adoptive cell therapy. Nat. Rev. Immunol. 2021, 21, 769–784.

17

Pollard, A. J.; Bijker, E. M. A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100.

18

Sun, Y. Z.; Yin, Y.; Gong, L. D.; Liang, Z. C.; Zhu, C. D.; Ren, C. X.; Zheng, N.; Zhang, Q.; Liu, H. B.; Liu, W. et al. Manganese nanodepot augments host immune response against coronavirus. Nano Res. 2021, 14, 1260–1272.

19

Bijelic, A.; Rompel, A. The use of polyoxometalates in protein crystallography—An attempt to widen a well-known bottleneck. Coord. Chem. Rev. 2015, 299, 22–38.

20

Proust, A.; Matt, B.; Villanneau, R.; Guillemot, G.; Gouzerh, P.; Izzet, G. Functionalization and post-functionalization: A step towards polyoxometalate-based materials. Chem. Soc. Rev. 2012, 41, 7605–7622.

21

Yang, W.; Lyu, Q. H.; Zhao, J.; Cao, L. Q.; Hao, Y.; Zhang, H. Recent advance in near-infrared/ultrasound-sensitive 2D-nanomaterials for cancer therapeutics. Sci. China Mater. 2020, 63, 2397–2428.

22

Bijelic, A.; Aureliano, M.; Rompel, A. The antibacterial activity of polyoxometalates: Structures, antibiotic effects and future perspectives. Chem. Commun. 2018, 54, 1153–1169.

23

Li, J. F.; Chen, Z. J.; Zhou, M. C.; Jing, J. B.; Li, W.; Wang, Y.; Wu, L. X.; Wang, L. Y.; Wang, Y. Q.; Lee, M. Polyoxometalate-driven self-assembly of short peptides into multivalent nanofibers with enhanced antibacterial activity. Angew. Chem., Int. Ed. 2016, 55, 2592–2595.

24
Blazevic, A.; Al-Sayed, E.; Roller, A.; Giester, G.; Rompel, A. Tris-functionalized hybrid Anderson polyoxometalates: Synthesis, characterization, hydrolytic stability and inversion of protein surface charge. Chem.—Eur. J. 2015, 21, 4762–4771.https://doi.org/10.1002/chem.201405644
DOI
25
Al-Sayed, E.; Blazevic, A.; Roller, A.; Rompel, A. The synthesis and characterization of aromatic hybrid Anderson–Evans POMs and their serum albumin interactions: The shift from polar to hydrophobic interactions. Chem.—Eur. J. 2015, 21, 17800–17807.https://doi.org/10.1002/chem.201502458
DOI
26

Izzet, G.; Volatron, F.; Proust, A. Tailor-made covalent organic–inorganic polyoxometalate hybrids: Versatile platforms for the elaboration of functional molecular architectures. Chem. Rec. 2017, 17, 250–266.

27

Pulendran, B.; Ahmed, R. Translating innate immunity into immunological memory: Implications for vaccine development. Cell 2006, 124, 849–863.

28

Besson, C.; Schmitz, S.; Capella, K. M.; Kopilevich, S.; Weinstock, I. A.; Köegerler, P. A regioselective Huisgen reaction inside a Keplerate polyoxomolybdate nanoreactor. Dalton Trans. 2012, 41, 9852–9854.

29

Zhou, J.; Hu, J.; Li, M.; Li, H.; Wang, W. Y.; Liu, Y. Z.; Winans, R. E.; Li, T.; Liu, T. B.; Yin, P. C. Hydrogen bonding directed co-assembly of polyoxometalates and polymers to core–shell nanoparticles. Mater. Chem. Front. 2018, 2, 2070–2075.

30

Chen, J.; Lin, L; Yan, N.; Hu, Y. Y.; Fang, H.; Guo, Z. P.; Sun, P. J.; Tian, H. Y.; Chen, X. S. Macrophages loaded CpG and GNR-PEI for combination of tumor photothermal therapy and immunotherapy. Sci. China Mater. 2018, 61, 1484–1494.

31

Hamel, K. M.; Liarski, V. M.; Clark, M. R. Germinal center B-cells. Autoimmunity 2012, 45, 333–347.

32

Vinuesa, C. G.; Linterman, M. A.; Yu, D.; MacLennan, I. C. M. Follicular helper T cells. Annu. Rev. Immunol. 2016, 34, 335–368.

33

Rydyznski, C.; Daniels, K. A.; Karmele, E. P.; Brooks, T. R.; Mahl, S. E.; Moran, M. T.; Li, C. M.; Sutiwisesak, R.; Welsh, R. M.; Waggoner, S. N. Generation of cellular immune memory and B-cell immunity is impaired by natural killer cells. Nat. Commun. 2015, 6, 6375.

34

Zhu, W. J.; Chen, Q.; Jin, Q. T.; Chao, Y.; Sun, L. L.; Han, X.; Xu, J.; Tian, L. L.; Zhang, J. L.; Liu, T. et al. Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. Nano Res. 2021, 14, 212–221.

35

Nguyen, T. L.; Cha, B. G.; Choi, Y.; Im, J.; Kim, J. Injectable dual-scale mesoporous silica cancer vaccine enabling efficient delivery of antigen/adjuvant-loaded nanoparticles to dendritic cells recruited in local macroporous scaffold. Biomaterials 2020, 239, 119859.

36

Sun, J.; Dodd, H.; Moser, E. K.; Sharma, R.; Braciale, T. J. CD4+ T cell help and innate-derived IL-27 induce Blimp-1-dependent IL-10 production by antiviral CTLs. Nat. Immunol. 2011, 12, 327–334.

37

Fillatreau, S.; Sweenie, C. H.; McGeachy, M. J.; Gray, D.; Anderton, S. M. B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 2002, 3, 944–950.

38

Brockmann, L.; Soukou, S.; Steglich, B.; Czarnewski, P.; Zhao, L. L.; Wende, S.; Bedke, T.; Ergen, C.; Manthey, C.; Agalioti, T. et al. Molecular and functional heterogeneity of IL-10-producing CD4+ T cells. Nat. Commun. 2018, 9, 5457.

39

Müller, A.; Krickemeyer, E.; Bögge, H.; Schmidtmann, M.; Peters, F. Organizational forms of matter: An inorganic super fullerene and keplerate based on molybdenum oxide. Angew. Chem., Int. Ed. 1998, 37, 3359–3363.

DOI
40

Müller, A.; Sarkar, S.; Shah, S. Q. N.; Bögge, H., Schmidtmann, M., Sarkar, S.; Kögerler, P.; Hauptfleisch, B.; Trautwein, A. X.; Schünemann, V. Archimedean synthesis and magic numbers: “Sizing” giant molybdenum-oxide-based molecular spheres of the keplerate type. Angew. Chem., Int. Ed. 1999, 38, 3238–3241.

DOI
41

Liu, T. B.; Imber, B.; Diemann, E.; Liu, G.; Cokleski, K.; Li, H. L.; Chen, Z. Q.; Muller, A. Deprotonations and charges of well-defined {Mo72Fe30} nanoacids simply stepwise tuned by pH allow control/variation of related self-assembly processes. J. Am. Chem. Soc. 2006, 128, 15914–15920.

File
12274_2021_4004_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 October 2021
Revised: 16 November 2021
Accepted: 17 November 2021
Published: 14 December 2021
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The work was supported financially by the National Natural Science Foundation of China (Nos. 22101086, 21961142018, and 51873067) and the Natural Science Foundation of Guangdong Province (Nos. 2021A1515012024 and 2021A1515010271).

Return