Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Long-lasting protective immune responses are expected following vaccination. However, most vaccines alone are inability to evoke an efficient protection. The combinatory administration of adjuvants with vaccines is critical for generating the enhanced immune responses. Herein, with biocompatible poly(4-vinylpyridine) (P4VP) as template, 2.5 nm iron/molybdenum oxide cluster, {Mo72Fe30}, is applied as an adjuvant to co-assemble with antigens of Mycobacterium bovis via hydrogen bonding at molecular scale. Molecular scale integration of the antigens and {Mo72Fe30} and their full exposure to body fluid media contribute to the augmentation of both humoral and cellular immune responses of the vaccines after inoculation in mice. Anti-inflammatory factor IL-10 gradually increases after 2 weeks followed by a final back to normal level by the 5th week. The balance between proinflammatory cytokines and anti-inflammatory factors suggests that immune system can be activated in the early stage of infection by the antigens carried by the supra-particles and secrete acute inflammatory factors for host defense and anti-inflammatory factors for immune protection.
Ke, G. J.; Su, D. K.; Li, Y.; Zhao, Y.; Wang, H. G.; Liu, W. J.; Li, M.; Yang, Z. T.; Xiao, F.; Yuan, Y. et al. An accurate, high-speed, portable bifunctional electrical detector for COVID-19. Sci. China Mater. 2021, 64, 739–747.
Escobar, L. E.; Molina-Cruz, A.; Barillas-Mury, C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proc. Natl. Acad. Sci. USA 2020, 117, 27741–27742.
Orme, I. M. The Achilles heel of BCG. Tuberculosis 2010, 90, 329–332.
Paludan, S. R.; Pradeu, T.; Masters, S. L.; Mogensen, T. H. Constitutive immune mechanisms: Mediators of host defence and immune regulation. Nat. Rev. Immunol. 2021, 21, 137–150.
Holmgren, J.; Czerkinsky, C. Mucosal immunity and vaccines. Nat. Med. 2005, 11, S45–S53.
Fries, C. N.; Curvino, E. J.; Chen, J. L.; Permar, S. R.; Fouda, G. G.; Collier, J. H. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat. Nanotechnol. 2021, 16, 1–14.
Perciani, C. T.; Liu, L. Y.; Wood, L.; MacParland, S. A. Enhancing immunity with nanomedicine: Employing nanoparticles to harness the immune system. ACS Nano 2021, 15, 7–20.
Tong, T. Y.; Guan, Y. P.; Gao, Y. J.; Xing, C. Y.; Zhang, S. Q.; Jiang, D. G.; Yang, X. W.; Kang, Y.; Pang, J. Smart nanocarriers as therapeutic platforms for bladder cancer. Nano Res. 2022, 15, 2157–2176.
Li, M. M.; Zhao, X. R.; Dai, J. F.; Yu, Z. L. Peptide therapeutics and assemblies for cancer immunotherapy. Sci. China Mater. 2019, 62, 1759–1781.
Gu, Z.; Biswas, A.; Zhao, M. X.; Tang, Y. Tailoring nanocarriers for intracellular protein delivery. Chem. Soc. Rev. 2011, 40, 3638–3655.
Nembrini, C.; Stano, A.; Dane, K. Y.; Ballester, M.; van der Vlies, A. J.; Marsland, B. J.; Swartz, M. A.; Hubbell, J. A. Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. Proc. Natl. Acad. Sci. USA 2011, 108, E989–E997.
Singh, A. Eliciting B cell immunity against infectious diseases using nanovaccines. Nat. Nanotechnol. 2021, 16, 16–24.
Li, X.; Pan, C.; Sun, P.; Peng, Z. H.; Feng, E. L.; Wu, J.; Wang, H. L.; Zhu, L. Orthogonal modular biosynthesis of nanoscale conjugate vaccines for vaccination against infection. Nano Res. 2022, 15, 1645–1653.
Shen, H.; Ackerman, A. L.; Cody, V.; Giodini, A.; Hinson, E. R.; Cresswell, P.; Edelson, R. L.; Saltzman, W. M.; Hanlon, D. J. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 2006, 117, 78–88.
Chan, J. D.; Lai, J. Y.; Slaney, C. Y.; Kallies, A.; Beavis, P. A.; Darcy, P. K. Cellular networks controlling T cell persistence in adoptive cell therapy. Nat. Rev. Immunol. 2021, 21, 769–784.
Pollard, A. J.; Bijker, E. M. A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100.
Sun, Y. Z.; Yin, Y.; Gong, L. D.; Liang, Z. C.; Zhu, C. D.; Ren, C. X.; Zheng, N.; Zhang, Q.; Liu, H. B.; Liu, W. et al. Manganese nanodepot augments host immune response against coronavirus. Nano Res. 2021, 14, 1260–1272.
Bijelic, A.; Rompel, A. The use of polyoxometalates in protein crystallography—An attempt to widen a well-known bottleneck. Coord. Chem. Rev. 2015, 299, 22–38.
Proust, A.; Matt, B.; Villanneau, R.; Guillemot, G.; Gouzerh, P.; Izzet, G. Functionalization and post-functionalization: A step towards polyoxometalate-based materials. Chem. Soc. Rev. 2012, 41, 7605–7622.
Yang, W.; Lyu, Q. H.; Zhao, J.; Cao, L. Q.; Hao, Y.; Zhang, H. Recent advance in near-infrared/ultrasound-sensitive 2D-nanomaterials for cancer therapeutics. Sci. China Mater. 2020, 63, 2397–2428.
Bijelic, A.; Aureliano, M.; Rompel, A. The antibacterial activity of polyoxometalates: Structures, antibiotic effects and future perspectives. Chem. Commun. 2018, 54, 1153–1169.
Li, J. F.; Chen, Z. J.; Zhou, M. C.; Jing, J. B.; Li, W.; Wang, Y.; Wu, L. X.; Wang, L. Y.; Wang, Y. Q.; Lee, M. Polyoxometalate-driven self-assembly of short peptides into multivalent nanofibers with enhanced antibacterial activity. Angew. Chem., Int. Ed. 2016, 55, 2592–2595.
Izzet, G.; Volatron, F.; Proust, A. Tailor-made covalent organic–inorganic polyoxometalate hybrids: Versatile platforms for the elaboration of functional molecular architectures. Chem. Rec. 2017, 17, 250–266.
Pulendran, B.; Ahmed, R. Translating innate immunity into immunological memory: Implications for vaccine development. Cell 2006, 124, 849–863.
Besson, C.; Schmitz, S.; Capella, K. M.; Kopilevich, S.; Weinstock, I. A.; Köegerler, P. A regioselective Huisgen reaction inside a Keplerate polyoxomolybdate nanoreactor. Dalton Trans. 2012, 41, 9852–9854.
Zhou, J.; Hu, J.; Li, M.; Li, H.; Wang, W. Y.; Liu, Y. Z.; Winans, R. E.; Li, T.; Liu, T. B.; Yin, P. C. Hydrogen bonding directed co-assembly of polyoxometalates and polymers to core–shell nanoparticles. Mater. Chem. Front. 2018, 2, 2070–2075.
Chen, J.; Lin, L; Yan, N.; Hu, Y. Y.; Fang, H.; Guo, Z. P.; Sun, P. J.; Tian, H. Y.; Chen, X. S. Macrophages loaded CpG and GNR-PEI for combination of tumor photothermal therapy and immunotherapy. Sci. China Mater. 2018, 61, 1484–1494.
Hamel, K. M.; Liarski, V. M.; Clark, M. R. Germinal center B-cells. Autoimmunity 2012, 45, 333–347.
Vinuesa, C. G.; Linterman, M. A.; Yu, D.; MacLennan, I. C. M. Follicular helper T cells. Annu. Rev. Immunol. 2016, 34, 335–368.
Rydyznski, C.; Daniels, K. A.; Karmele, E. P.; Brooks, T. R.; Mahl, S. E.; Moran, M. T.; Li, C. M.; Sutiwisesak, R.; Welsh, R. M.; Waggoner, S. N. Generation of cellular immune memory and B-cell immunity is impaired by natural killer cells. Nat. Commun. 2015, 6, 6375.
Zhu, W. J.; Chen, Q.; Jin, Q. T.; Chao, Y.; Sun, L. L.; Han, X.; Xu, J.; Tian, L. L.; Zhang, J. L.; Liu, T. et al. Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. Nano Res. 2021, 14, 212–221.
Nguyen, T. L.; Cha, B. G.; Choi, Y.; Im, J.; Kim, J. Injectable dual-scale mesoporous silica cancer vaccine enabling efficient delivery of antigen/adjuvant-loaded nanoparticles to dendritic cells recruited in local macroporous scaffold. Biomaterials 2020, 239, 119859.
Sun, J.; Dodd, H.; Moser, E. K.; Sharma, R.; Braciale, T. J. CD4+ T cell help and innate-derived IL-27 induce Blimp-1-dependent IL-10 production by antiviral CTLs. Nat. Immunol. 2011, 12, 327–334.
Fillatreau, S.; Sweenie, C. H.; McGeachy, M. J.; Gray, D.; Anderton, S. M. B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 2002, 3, 944–950.
Brockmann, L.; Soukou, S.; Steglich, B.; Czarnewski, P.; Zhao, L. L.; Wende, S.; Bedke, T.; Ergen, C.; Manthey, C.; Agalioti, T. et al. Molecular and functional heterogeneity of IL-10-producing CD4+ T cells. Nat. Commun. 2018, 9, 5457.
Müller, A.; Krickemeyer, E.; Bögge, H.; Schmidtmann, M.; Peters, F. Organizational forms of matter: An inorganic super fullerene and keplerate based on molybdenum oxide. Angew. Chem., Int. Ed. 1998, 37, 3359–3363.
Müller, A.; Sarkar, S.; Shah, S. Q. N.; Bögge, H., Schmidtmann, M., Sarkar, S.; Kögerler, P.; Hauptfleisch, B.; Trautwein, A. X.; Schünemann, V. Archimedean synthesis and magic numbers: “Sizing” giant molybdenum-oxide-based molecular spheres of the keplerate type. Angew. Chem., Int. Ed. 1999, 38, 3238–3241.
Liu, T. B.; Imber, B.; Diemann, E.; Liu, G.; Cokleski, K.; Li, H. L.; Chen, Z. Q.; Muller, A. Deprotonations and charges of well-defined {Mo72Fe30} nanoacids simply stepwise tuned by pH allow control/variation of related self-assembly processes. J. Am. Chem. Soc. 2006, 128, 15914–15920.