Journal Home > Volume 15 , Issue 5

Two-dimensional (2D) materials with defects are desired for catalysis after the adsorption of monodispersed noble metal atoms. High-performance catalysts with the absolute value of Gibbs free energy (|ΔGH|) close to zero, is one of the ultimate goals in the catalytic field. Here, we report the formation of monolayer titanium selenide (TiSe2) with line defects. The low-temperature scanning tunneling microscopy/spectroscopy (STM/S) measurements revealed the structure and electronic states of the line defect. Density functional theory (DFT) calculation results confirmed that the line defects were induced by selenium vacancies and the STM simulation was in good agreement with the experimental results. Further, DFT calculations show that monolayer TiSe2 with line defects have good catalytic activity for hydrogen evolution reaction (HER). If the defects are decorated with single Pt atom, the HER catalytic activity will be enhanced dramatically (|ΔGH| = 0.006 eV), which is much better than Pt metal (|ΔGH| = 0.09 eV). Line defects in monolayer TiSe2/Au(111) provide a wonderful platform for the design of high-performance catalysts.

Publication history
Copyright

Publication history

Received: 26 September 2021
Revised: 12 November 2021
Accepted: 16 November 2021
Published: 18 December 2021
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return